RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

FINITE DIFFERENCE INTEGRO-INTERPOLATION METHOD FOR DISCONTINUOUS SOLUTIONS OF THE USADEL EQUATIONS

PII
S30345030S0374064125070108-1
DOI
10.7868/S3034503025070108
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 7
Pages
1000-1008
Abstract
The paper considers a one-dimensional problem for elliptic equations with nonstandard jump conditions on the inner boundary and a discontinuous solution. The integro-interpolation (balance) method is used to approximate the problem, including the junction condition on the inner boundary, which leads, in the case of Roben relations (the jump of the solution is proportional to the flux), to a four-point pattern. This difference scheme is used to solve the system of nonlinear Uzadel equations, which is the basic mathematical model at the microlevel for describing currents and fields in superconductors, including those with Josephson junctions. The results of calculations for the Abrikosov vortex problem are presented and the accuracy of the proposed approach is investigated, including for a simplified three-point scheme.
Keywords
разностная схема интегро-интерполяционный метод разрывное решение уравнение Узаделя
Date of publication
07.12.2025
Year of publication
2025
Number of purchasers
0
Views
34

References

  1. 1. Самарский, А.А. Разностные методы для эллиптических уравнений / А.А. Самарский, В.Б. Андреев. — М. : Наука, 1976. — 352 с.
  2. 2. Usadel, K.D. Generalized diffusion equation for superconducting alloys / K.D. Usadel // Phys. Rev. Lett. — 1979. — V. 25, № 8. — P. 507–509.
  3. 3. Golubov, A.A. The current-phase relation in Josephson junctions / A.A. Golubov, M.Y. Kupriyanov, E. Il’ichev // Rev. Mod. Phys. — 2004. — V. 76, № 2. — P. 411–469.
  4. 4. Golubov, A.A. Abrikosov vortices in SF bilayers / A.A. Golubov, M.Y. Kupriyanov, M.M. Khapaev // JETP Lett. — 2016. — V. 104. — P. 847–851.
  5. 5. Expansion of a superconducting vortex core into a diffusive metal / V.S. Stolyarov, C. Tristan, B. Christophe [et al.] // Nature Communications. — 2018. — V. 9. — Art. 2277.
  6. 6. Моделирование сверхпроводниковых SFN-структур с помощью метода конечных элементов / М.М. Хапаев, М. Ю. Куприянов, С. В. Бакурский [и др.] // Дифференц. уравнения. — 2020. — Т. 56, № 7. — C. 984–992.
  7. 7. Scanning vortex microscopy reveals thickness-dependent pinning nano-network in superconducting niobium films / R.A. Hovhannisyan, S.Y. Grebenchuk, S.A. Larionov [et al.] // Commun. Mater. — 2025. — V. 6, № 1.
  8. 8. Kwak, D.Y. New finite element for interface problems having Robin type jump / D.Y. Kwak, L. Seungwoo, H.A. Yunkyong // Int. J. of Numerical Analysis & Modeling. — 2017. — V. 14, № 4–5. — P. 532.
  9. 9. A finite difference method for elliptic problems with implicit jump condition / F.J. Cao, D.F. Yuan, Z.Q. Sheng [et al.] // Int. J. of Numerical Analysis & Modeling. — 2022. — V. 19, № 4. — P. 439–457.
  10. 10. On the discretization of interface problems with perfect and imperfect contact / T. Chernogorova, R.E. Ewing, O. Iliev, R. Lazarov // Numerical Treatment of Multiphase Flows in Porous Media / Eds. Z. Chen, R.E. Ewing, Z.C. Shi. — Springer, 2000. — P. 93–103.
  11. 11. Хапаев, М.М. Разностная схема для разрывных решений уравнений Узаделя / М.М. Хапаев, М.Ю. Куприянов // Дифференц. уравнения. — 2024. — Т. 60, № 7. — C. 1001–1008.
  12. 12. Givoli, D. Finite element modeling of thin layers / D. Givoli // Computer Modeling in Engineering and Sciences. — 2004. — V. 5, № 6. — P. 497–514.
  13. 13. A finite volume method preserving maximum principle for the conjugate heat transfer problems with general interface conditions / Z. Huifang, S. Zhiqiang, Y. Guangwei // J. Comput. Math. — 2023. — V. 41, № 3. — P. 345–369.
  14. 14. Самарский, А.А. Теория разностных схем / А.А. Самарский. — М. : Наука, 1977. — 657 с.
  15. 15. Самарский, А.А. Численные методы математической физики / А.А. Самарский, А.В. Гулин. — М. : Научный мир, 2000. — 316 с.
  16. 16. Андреев, В.Б. Численные методы / В.Б. Андреев. — М. : МАКС Пресс, 2013. — 336 с.
  17. 17. Николаев, Е.С. Методы решения сеточных уравнений / Е.С. Николаев. — М. : Изд-во Моск. ун-та, 2023. — 404 c.
  18. 18. Калиткин, Н.Н. Численные методы. Кн. 1 / Н.Н. Калиткин. — М. : Академия, 2013. — 304 c.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library