- PII
- S30345030S0374064125070084-1
- DOI
- 10.7868/S3034503025070084
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 7
- Pages
- 971-985
- Abstract
- The paper considers the stress-strain state of a layered geological medium under the influence of an external dynamic load. Each layer is described by an isotropic linear elastic model with specified mechanical parameters. For the numerical simulation of the wave propagation process in a two-dimensional problem formulation, a grid-characteristic scheme of a high approximation order was constructed. The issues of approximating boundary and contact conditions, the problem of the accuracy reduction for spatial splitting schemes are addressed. The numerical solution results for test problems are presented.
- Keywords
- сейсмическая волна линейно-упругая среда сеточно-характеристический метод операторное расщепление
- Date of publication
- 07.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 25
References
- 1. Sofronov, I. Multi-block finite-difference method for 3D elastodynamic simulations in anisotropic subhorizontally layered media / I. Sofronov, N. Zaitsev, L. Dovgilovich // Geophys. Prospect. — 2015. — V. 63. — P. 1142–1160.
- 2. Applying an advanced temporal and spatial high-order finite-difference stencil to 3D seismic wave modeling / S. Xu, Q. Bao, Z. Ren, Y. Liu // J. Comput. Phys. — 2021. — V. 436, № 1. — Art. 110133.
- 3. Dumbser, M. Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3D / M. Dumbser, M. Kaser, J. De La Puente // Geophysical J. Int. — 2007. — V. 171, № 2. — P. 665–694.
- 4. Ghoudi, T. Novel adaptive finite volume method on unstructured meshes for time-domain wave scattering and diffraction / T. Ghoudi, M. Shadi Mohamed, M. Seaid // Computers and Mathematics with Applications. — 2023. — V. 141, № 1. — 2023. — P. 54–66.
- 5. Watanabe, K. Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media / K. Watanabe, F. Pisano, B. Jeremic // Engineering with Computers. — 2017. — V. 33. — P. 519–545.
- 6. Meng, W. Seismic wavefield simulation by a modified finite element method with a perfectly matched layer absorbing boundary / W. Meng, L.-Y. Fu // J. Geophysics and Engineering. — 2017. — V. 14, № 4. — P. 852–864.
- 7. Multiscale geomechanical modeling taking into account the evolution of the micro-structure of the geological media / A.V. Vershinin, K.M. Zingerman, V.A. Levin [et al.] // Russ. J. of Geophysical Technologies. — 2024. — V. 1. — P. 105–117.
- 8. Mitskovets, I. Parallel modeling of elastic wave propagation, with explicit pore delineation using overset grids method / I. Mitkovets, V. Sagan, N. Khokhlov // Phys. Part. Nucl. — 2024. — V. 55, № 3. — P. 516–518.
- 9. Parallel computations by the grid-characteristic method on chimera computational grids in 3d problems of railway non-destructive testing / A. Favorskaya, N. Khokhlov, V. Sagan, D. Podlesnykh // Supercomputing. RuSCDays 2022 / Eds. V. Voevodin, S. Sobolev, M. Yakobovskiy, R. Shagaliev. — Cham : Springer, 2022. — P. 199–213.
- 10. Full-wave simulation in media with mesoscopic fractures by the matrix-free finite element method on GPU / G. Sabinin, A. Mokin, A. Vershinin, T. Chichinina // AIP Conf. Proc. — 2023. — V. 2899. — Art. 020123.
- 11. Khokhlov, N.I. Grid-characteristic method on overlapping curvilinear meshes for modeling elastic waves scattering on geological fractures / N.I. Khokhlov, A. Favorskaya, V. Furgailo // Minerals. — 2022. — V. 12, № 12. — Art. 1597.
- 12. Явно-неявные схемы расчёта динамики упругопластических сред с малым временем релаксации / В.И. Голубев, И.С. Никитин, Н.Г. Бураго, Ю.А. Голубева // Дифференц. уравнения. — 2023. — Т. 59, № 6. — C. 803–813.
- 13. Явно-неявные схемы расчёта динамики упругопластических сред с разупрочнением / В.И. Голубев, И.С. Никитин, А.В. Шевченко, И.Б. Петров // Дифференц. уравнения. — 2024. — Т. 60, № 6. — C. 782–793.
- 14. Сеточно-характеристический метод на неструктурированных тетраэдральных сетках / М.В. Муратов, И.Б. Петров, А.В. Санников, А.В. Фаворская // Журн. вычислит. математики и мат. физики. — 2014. — Т. 54, № 5. — C. 821–832.
- 15. Guseva, E.K. Linear quasi-monotone and hybrid grid-characteristic schemes for the numerical solution of linear acoustic problems / E.K. Guseva, V.I. Golubev, I.B. Petrov // Numer. Analys. Appl. — 2023. — V. 16. — P. 112–122.
- 16. Шевченко, А.В. Граничные и контактные условия повышенного порядка аппроксимации для сеточно-характеристических схем в задачах акустики / А.В. Шевченко, В.И. Голубев // Журн. вычислит. математики и мат. физики. — 2023. — Т. 63, № 10. — C. 1600–1613.
- 17. Kucharik, M. Multidimensional first and second order symmetric Strang splitting for hyperbolic systems / M. Kucharik, B. Wendroff // Applied Numerical Mathematics. — 2010. — V. 60, № 1–2. — P. 74–82.
- 18. Golubev, V.I. Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting / V.I. Golubev, A.V. Shevchenko, I.B. Petrov // Computer Research and Modeling. — 2022. — V. 14, № 4. — P. 899–910.
- 19. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes / W. Auzinger, H. Hofstatter, D. Ketcheson, O. Koch // BIT Numer. Math. — 2017. — V. 57, № 1. — P. 55–74.
- 20. Favorskaya, A.V. Modeling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method / A.V. Favorskaya, M.S. Zhdanov, N.I. Khokhlov, I.B. Petrov // Geophys. Prospect. — 2018. — V. 66. — P. 1485–1502.