- Код статьи
- 10.31857/S0374064123110080-1
- DOI
- 10.31857/S0374064123110080
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 59 / Номер выпуска 11
- Страницы
- 1533-1540
- Аннотация
- Рассматривается линейно-выпуклая управляемая система, задаваемая совокупностью дифференциальных уравнений, с непрерывными матричными коэффициентами. В системе могут быть управляющие параметры, а также неопределённости (помехи), на возможные значения которых наложены жёсткие поточечные ограничения. Для данной системы на конечном отрезке времени с учётом ограничений исследуется задача гарантированного попадания на целевое множество из заданной начальной позиции, несмотря на действие помехи. Основным этапом решения задачи является построение альтернированного интеграла и множества разрешимости. Для построения последнего наибольшую вычислительную сложность представляет вычисление геометрической разности целевого множества и множества, определяемого помехой. Рассматривается двумерный пример указанной задачи, для которого предлагается способ нахождения множества разрешимости без необходимости овыпукления разности опорных функций множеств.
- Ключевые слова
- Дата публикации
- 18.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 7
Библиография
- 1. Понтрягин Л.С. О линейных дифференциальных играх. II // Докл. АН СССР. 1967. Т. 175. № 4. С. 910-912.
- 2. Понтрягин Л.С. Линейные дифференциальные игры преследования // Мат. сб. 1980. Т. 112. № 3. С. 307-330.
- 3. Ухоботов В.И. Об одной задаче управления при наличии помехи и возможной поломке // Тр. Ин-та математики и механики УрО РАН. 2019. Т. 25. № 3. С. 265-278.
- 4. Каплунова Е.П., Точилин П.А. Задача целевого управления квадрокоптером при движении в горизонтальной плоскости с огибанием препятствий // Вестн. Моск. ун-та. Сер. 15. Вычислит. математика и кибернетика. 2021. № 4. С. 21-36.
- 5. Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М., 1974.
- 6. Куржанский А.Б. Альтернированный интеграл Понтрягина в теории синтеза управлений // Тр. Мат. ин-та им. В.А. Стеклова. 1999. Т. 224. С. 234-248.
- 7. Fleming W.H., Soner H.M. Controlled Markov Processes and Viscosity Solutions. New York, 1993.
- 8. Kurzhanski A.B., V\'aliy I. Ellipsoidal Calculus for Estimation and Control. Boston, 1997.
- 9. Половинкин E.C., Балашов М.В. Элементы выпуклого и сильно выпуклого анализа. М., 2007.
- 10. Половинкин E.C. Многозначный анализ и дифференциальные включения. М., 2014.