ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Об одной задаче вычисления множества разрешимости для линейной системы с неопределённостью

Код статьи
10.31857/S0374064123110080-1
DOI
10.31857/S0374064123110080
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 11
Страницы
1533-1540
Аннотация
Рассматривается линейно-выпуклая управляемая система, задаваемая совокупностью дифференциальных уравнений, с непрерывными матричными коэффициентами. В системе могут быть управляющие параметры, а также неопределённости (помехи), на возможные значения которых наложены жёсткие поточечные ограничения. Для данной системы на конечном отрезке времени с учётом ограничений исследуется задача гарантированного попадания на целевое множество из заданной начальной позиции, несмотря на действие помехи. Основным этапом решения задачи является построение альтернированного интеграла и множества разрешимости. Для построения последнего наибольшую вычислительную сложность представляет вычисление геометрической разности целевого множества и множества, определяемого помехой. Рассматривается двумерный пример указанной задачи, для которого предлагается способ нахождения множества разрешимости без необходимости овыпукления разности опорных функций множеств.
Ключевые слова
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
6

Библиография

  1. 1. Понтрягин Л.С. О линейных дифференциальных играх. II // Докл. АН СССР. 1967. Т. 175. № 4. С. 910-912.
  2. 2. Понтрягин Л.С. Линейные дифференциальные игры преследования // Мат. сб. 1980. Т. 112. № 3. С. 307-330.
  3. 3. Ухоботов В.И. Об одной задаче управления при наличии помехи и возможной поломке // Тр. Ин-та математики и механики УрО РАН. 2019. Т. 25. № 3. С. 265-278.
  4. 4. Каплунова Е.П., Точилин П.А. Задача целевого управления квадрокоптером при движении в горизонтальной плоскости с огибанием препятствий // Вестн. Моск. ун-та. Сер. 15. Вычислит. математика и кибернетика. 2021. № 4. С. 21-36.
  5. 5. Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М., 1974.
  6. 6. Куржанский А.Б. Альтернированный интеграл Понтрягина в теории синтеза управлений // Тр. Мат. ин-та им. В.А. Стеклова. 1999. Т. 224. С. 234-248.
  7. 7. Fleming W.H., Soner H.M. Controlled Markov Processes and Viscosity Solutions. New York, 1993.
  8. 8. Kurzhanski A.B., V\'aliy I. Ellipsoidal Calculus for Estimation and Control. Boston, 1997.
  9. 9. Половинкин E.C., Балашов М.В. Элементы выпуклого и сильно выпуклого анализа. М., 2007.
  10. 10. Половинкин E.C. Многозначный анализ и дифференциальные включения. М., 2014.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека