- PII
- S30345030S0374064125080085-1
- DOI
- 10.7868/S3034503025080085
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 8
- Pages
- 1094-1116
- Abstract
- Time-varying linear and nonlinear descriptor systems of observation with discrete time are considered. In the linear case, the criteria for observability on the finite horizon are obtained, and the conditions for robust observability are found. The duality theorems linking the properties of controllability and observability are proved. For nonlinear systems, the conditions of local observability on the finite horizon are obtained, using linear approximation.
- Keywords
- дискретная дескрипторная система нестационарная система нелинейная система наблюдаемость двойственность
- Date of publication
- 07.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 47
References
- 1. Luenberger, D., Dynamic equations in descriptor form, IEEE Trans. Automat. Control, 1977, vol. 22, no. 3, pp. 312–321.
- 2. Mills, J.K. and Goldenberg, A.A., Force and position control of manipulators during constrained motion task, IEEE Trans. Robot. Automat., 1989, vol. 5, pp. 30–46.
- 3. Bauer, I., Bock, H.G., Leineweber, D.B., and Schl¨oder, J.P., Direct Multiple Shooting Methods for Control and Optimization of DAE in Chemical Engineering. Scientific Computing in Chemical Engineering. II, Springer, 1999.
- 4. Rabier, P.J. and Rheinbolt, W.C., Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint, SIAM, 2000.
- 5. Scott, B., Power system dynamic response calculations, Proc. IEEE, 1979, vol. 67, pp. 219–247.
- 6. Riaza, R., Differential-Algebraic Systems: Analytical Aspects and Circuit Applications, World Scientific, 2008.
- 7. Br¨ull, T., Explicit solutions of regular linear descriptor systems with constant coefficients, Electronic J. of Linear Algebra, 2009, vol. 18, no. 1, pp. 317–338.
- 8. Hemami, H. and Wyman, B.F., Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane, IEEE Trans. Automat. Control, 1979, vol. 24, pp. 526–535.
- 9. Chen, T. and Francis, B.A., Input-output stability of sampled-data systems, IEEE Trans. Automat. Control, 1991, vol. 36, no. 1, pp. 50–58.
- 10. Stevens, B.L. and Lewis, F.L., Aircraft Modelling, Dynamics and Control, New York: John Wiley & Sons, 1991.
- 11. Verghese, G., L´evy, B., and Kailath, T., A generalized state-space for singular systems, IEEE Trans. Automat. Control, 1981, vol. 4, pp. 811–831.
- 12. Bender, D., Lyapunov-like equations and reachability-observability Gramians for descriptor systems, IEEE Trans. Automat. Control, 1987, vol. 32, no. 4, pp. 343–348.
- 13. Lewis, F. and Mertzios, B., On the analysis of discrete linear time-invariant singular systems, IEEE Trans. Automat. Control, 1990, vol. 35, no. 4, pp. 506–511.
- 14. Dai, L., Singular Control System, New York: Springer-Verlag, 1989.
- 15. Dai, L., Observer for discrete singular systems, IEEE Trans. Automat. Control, 1988, vol. 33, pp. 187–191.
- 16. Coll, C., Fullana, M.J., and S´anchez, E., Some invariants of discrete-time descriptor systems, Appl. Math. Comput., 2002, vol. 127, no. 2, 3, pp. 277–287.
- 17. Moysis, L., Karampetakis, N., and Antoniou, E.N., Observability of linear discrete-time systems of algebraic and difference equations, Int. J. Control, 2017, vol. 92, no. 2, pp. 1–25.
- 18. Karampetakis, N. and Vologiannidis, S., On the fundamental matrix of the inverse of a polynomial matrix and applications to ARMA representations, Linear Algebra Appl., 2009, vol. 431, no. 11, pp. 2261–2276.
- 19. Kaczorek, T., Positive 1D and 2D Systems, London: Springer, 2002.
- 20. Dassios, I. and Kalogeropoulos, G., On a non-homogeneous signal linear discrete-time system with a singular matrix pencil, Circuits Syst. Signal Process, 2013, vol. 32, no. 4, pp. 1615–1635.
- 21. Koumboulis, F. and Mertzios, B., On Kalman's controllability and observability criteria for singular systems, Circuits Syst. Signal Process, 1999, vol. 18, no. 3, pp. 269–290.
- 22. Duan, G.R., Analysis and Design of Descriptor Linear Systems, New York: Springer, 2010.
- 23. Berger, T., Reis, T., and Trenn, S., Observability of linear differential-algebraic systems: a survey, in: Surveys in Differential-Algebraic Equations. IV, Cham: Springer, 2017, pp. 161–219.
- 24. Losse, P. and Mehrmann, V., Controllability and observability of second order descriptor systems, SIAM J. Control Optim., 2008, vol. 47, no. 3, pp. 1351–1379.
- 25. Shcheglova, A.A., The stability by linear approximation of discrete-time nonlinear singular systems, Siberian Math. J., 2024, vol. 65, no. 2, pp. 407–427.
- 26. Gaˆıshun, I.V., Sistemy s diskretnym vremenem (Systems with Discrete Time), Minsk: Inst. Mat. NAN Belarus, 2001.
- 27. Shilov, G.E., Matematicheskiy analiz. Funktsii neskol’kikh veshchestvennykh peremennykh (Mathematical Anal-isys. Functions of Several Real Variables), Moscow: Nauka, 1972.