- PII
- S30345030S0374064125070057-1
- DOI
- 10.7868/S3034503025070057
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 7
- Pages
- 919-940
- Abstract
- The fully conservative finite volume discretization of the incompressible Navier–Stokes equations in cylindrical coordinates is constructed on a staggered grid. The proposed discretization ensures momentum conservation in a computational domain, and mass conservation within the control volumes for pressure, and velocity components. The energy conservation equation directly follows from the discrete momentum equation. Both conservative and non-conservative forms of convective terms are approximated. The proposed discrete counterpart of the vector Laplace operator is self-adjoint and negative definite.
- Keywords
- вязкая несжимаемая жидкость уравнение Навье–Стокса цилиндрическая система координат консервативная разностная схема метод конечных объёмов
- Date of publication
- 07.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 25
References
- 1. Fukagata, K. and Kasagi, N., Highly energy-conservative finite difference method for the cylindrical coordinate system, J. Comput. Phys., 2002, vol. 181, pp. 478–498.
- 2. He, K., Seddighi, M., and He, S., DNS study of a pipe flow following a step increase in flow rate, Int. J. of Heat and Fluid Flow, 2016, vol. 57, pp. 130–141.
- 3. Gelfgat, A.Y., Three-dimensional instability of axisymmetric flows: solution of benchmark problems by a loworder finite volume method, Int. J. for Numerical Methods in Fluid, 2007, vol. 54, pp. 269–294.
- 4. Wang, B., Zhou, L., Wan, Z. [et. al.], Stability analysis of Rayleigh–Benard convection in a cylinder with internal heat generation, Phys. Rev. E, 2016, vol. 94, no. 1, art. 013108.
- 5. Bessonov, O.A., Effect of crystal and crubicle rotation on the flow stability in the Czochralski model at low Prandtl numbers, Fluid Dynamics, 2016, vol. 51, pp. 469–477.
- 6. Xiao, Q. and Derby, J., Three-dimensional melt flow in Czochralski oxide growth: high-resolution, massively parallel, finite element computations, J. of Crystal Growth, 1995, vol. 152, pp. 169–181.
- 7. Harlow, F.H. and Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluids, 1965, vol. 8, pp. 2182–2189.
- 8. Samarsky, A.A. and Popov, Yu.P., Raznostnye methodi resheniya zadach gazovoy dinamici (Difference Methods for Solving Gas Dynamics Problems), Moscow: Nauka, 1992.
- 9. Samarsky, A.A., Tishkin, V.F., Favorsky A.P., and Shashkov, M.Yu., Operator difference schemes, Differ. Uravn., 1981, vol. 17, no. 7, pp. 1317–1327.
- 10. Lipnikov, K., Manzini, G., and Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 2014, vol. 257, pp. 1163–1227.
- 11. Barbosa, E. and Daube, O., A finite difference method for 3D incompressible flows in cylindrical coordinate, Computers and Fluids, 2005, vol. 34, pp. 950–971.
- 12. Oud, G.T., van der Heul, D.R., Vuik, C., and Henkes, R.A.W.M., A fully conservative mimetic discretization of the Navier–Stokes equations in cylindrical coordinates with associated singularity treatment, J. Comput. Phys., 2016, vol. 325, pp. 314–337.
- 13. Loyciansky, L.G., Mehanika zhidkosti i gaza (Fluid and Gas Mechanics), Moscow: Drofa, 2003.
- 14. Arakawa, A., Computational design for long-term numerical integration of the equation of fluid motion: two dimensional incompressible flow, J. Comput. Phys., 1966, vol. 1, pp. 119–143.
- 15. Friazinov, I.V., Conservativnye raznostnie shemy dlia uravninyi viazkoy neszhimarmoy zhidkosti v krivolyneynih ortogonalnyh coordinatah, Zhurnal Vichislitelnoy Matematiki i Matematicheskoy fiziki (J. Math. Math. Phys.), 1982, vol. 22, no. 5, pp. 1195–1207.
- 16. Samarsky, A.A., Theory of Difference Schemes, New-York: Marcel Dekker, 1989.