RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

REPRESENTATION OF THE GREEN’S FUNCTION OF THE NAVIER PROBLEM FOR THE BIHARMONIC EQUATION IN A BALL

PII
S0374064125060083-1
DOI
10.31857/S0374064125060083
Publication type
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 6
Pages
839-844
Abstract
The paper presents a new representation of the Green’s function of the Navier problem for the biharmonic equation in the unit ball and gives a representation of the solution of the Navier problem for the homogeneous biharmonic equation without explicit use of the Green’s function.
Keywords
задача Навье бигармоническое уравнение функция Грина
Date of publication
24.04.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Begehr, H. Biharmonic Green functions / H. Begehr // Le Matematiche. — 2006. — V. 61. — P. 395–405.
  2. 2. Ying, W. Biharmonic Green function and biharmonic Neumann function in a sector / W. Ying, Ye. Liuqing // Complex Variables and Elliptic Equations. — 2013. — V. 58, № 1. — P. 7–22.
  3. 3. Ying, W. Tri-harmonic boundary value problems in a sector / W. Ying // Complex Variables and Elliptic Equations. — 2014. — V. 59, № 5. — P. 732–749.
  4. 4. Karachik, V.V. Green’s function of Dirichlet problem for biharmonic equation in the ball / V.V. Karachik // Complex Variables and Elliptic Equations. — 2019. — V. 64, № 9. — P. 1500–1521.
  5. 5. Карачик, В.В. O функции Грина задачи Дирихле для бигармонического уравнения в шаре / В.В. Карачик // Журн. вычислит. математики и мат. физики. — 2019. — Т. 59, № 1. — С. 71–86.
  6. 6. Карачик, В.В. Функция Грина задачи Дирихле для 3-гармонического уравнения в шаре / В.В. Карачик // Мат. заметки. — 2020. — Т. 107, № 1. — С. 87–105.
  7. 7. Карачик, В.В. Функции Грина задач Навье и Рикье–Неймана для бигармонического уравнения в шаре / В.В. Карачик // Дифференц. уравнения. — 2021. — Т. 57, № 5. — С. 673–686.
  8. 8. Бицадзе, А.В. Уравнения математической физики / А.В. Бицадзе. — М. : Наука, 1982. — 336 c.
  9. 9. Sweers, G. A survey on boundary conditions for the biharmonic / G. Sweers // Complex Variables and Elliptic Equations. — 2009. — V. 54, № 2. — P. 79–93.
  10. 10. Gazzola, F. Polyharmonic Boundary Value Problems / F. Gazzola, H.C. Grunau, G. Sweers. — Springer, 2010. — 429 p.
  11. 11. Karachik, V.V. On some special polynomials / V.V. Karachik // Proc. Amer. Math. Soc. — 2004. — V. 132, № 4. — P. 1049–1058.
  12. 12. Karachik, V.V. Dirichlet and Neumann boundary value problems for the polyharmonic equation in the unit ball / V.V. Karachik // Mathematics. — 2021. — V. 9, № 16. — Art. 1907.
  13. 13. Karachik, V.V. Green’s functions of some boundary value problems for the biharmonic equation / V.V. Karachik // Complex Variables and Elliptic Equations. — 2022. — V. 67, № 7. — P. 1712–1736.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library