Исследуется задача о нормальных колебаниях гомогенной смеси нескольких вязких сжимаемых жидкостей, заполняющей ограниченную область трёхмерного пространства с бесконечно гладкой границей. Доказано, что существенный спектр задачи представляет собой конечный набор отрезков, расположенных на действительной оси. Оставшийся спектр состоит из изолированных собственных значений конечной алгебраической кратности и расположен на действительной оси, за исключением, быть может, конечного числа комплексносопряжённых собственных значений. Спектр задачи содержит подпоследовательность собственных значений с предельной точкой в бесконечности и степенным асимптотическим распределением.
Indexing
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation