ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Спектральные свойства оператора в задаче о колебаниях смеси вязких сжимаемых жидкостей

Код статьи
10.31857/S0374064123040040-1
DOI
10.31857/S0374064123040040
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 4
Страницы
467-482
Аннотация
Исследуется задача о нормальных колебаниях гомогенной смеси нескольких вязких сжимаемых жидкостей, заполняющей ограниченную область трёхмерного пространства с бесконечно гладкой границей. Доказано, что существенный спектр задачи представляет собой конечный набор отрезков, расположенных на действительной оси. Оставшийся спектр состоит из изолированных собственных значений конечной алгебраической кратности и расположен на действительной оси, за исключением, быть может, конечного числа комплексносопряжённых собственных значений. Спектр задачи содержит подпоследовательность собственных значений с предельной точкой в бесконечности и степенным асимптотическим распределением.
Ключевые слова
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
6

Библиография

  1. 1. Нигматулин Р.И. Динамика многофазных сред. Т. 1. М., 1987.
  2. 2. Rajagopal K.L., Tao L. Mechanics of Mixtures. Ser. Adv. Math. Appl. Sci. V. 35. River Edge, 1995.
  3. 3. Mamontov A.E., Prokudin D.A. Viscous compressible multi-fluids: modeling and multi-D existence // Methods Appl. Anal. 2013. V. 20. № 2. P. 179-195.
  4. 4. Frehse J., Goj S., M\\'alek J. A Stokes-like system for mixtures // Nonlinear Problems in Mathematical Physics and Related Topics II. Intern. Math. Ser. / Eds. M.Sh. Birman, S. Hildebrandt, V.A. Solonnikov, and N.N. Uraltseva. Dordrecht, Norwell, New York, London, 2002. P. 119-136.
  5. 5. Frehse J., Goj S., M\\'alek J. On power and non-power asymptotic behavior of positive solutions to Emden-Fowler type higher-order equations // SIAM J. Math. Anal. 2005. V. 36. № 4. P. 1259-1281.
  6. 6. Frehse J., Goj S., M\\'alek J. A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum // Appl. Math. 2005. V. 50. P. 527-541.
  7. 7. Мамонтов А.Е., Прокудин Д.А. Разрешимость нестационарных уравнений многокомпонентных вязких сжимаемых жидкостей // Изв. РАН. Сер. Мат. 2018. Т. 82. № 1. С. 151-197.
  8. 8. Пал П.К., Масленникова В.Н. Спектральные свойства операторов в задаче о колебании сжимаемой жидкости во вращающихся сосудах // Докл. АН СССР. 1985. Т. 281. № 3. С. 529-534.
  9. 9. Grubb G., Geymonat G. The essential spectrum of elliptic systems of mixed order // Math. Ann. 1977. V. 227. P. 247-276.
  10. 10. Faierman M., Fries R.J., Mennicken R., M\\"oller M. On the essential spectrum of the linearized Navier-Stokes operator // Integr. Equat. Oper. Theory. 2000. V. 38. № 1. P. 9-27.
  11. 11. Atkinson F.V., Langer H., Mennicken R., Shkalikov A.A. The essential spectrum of some matrix operators // Math. Nachr. 1994. V. 167. P. 5-20.
  12. 12. Ректорис К. Вариационные методы в математической физике и технике. М., 1985.
  13. 13. Като Т. Теория возмущений линейных операторов. М., 1972.
  14. 14. Солонников В.А. Об общих краевых задачах для систем, эллиптических в смысле А. Даглиса-Л. Ниренберга. II // Тр. Мат. ин-та имени В.А. Стеклова. 1966. Т. 92. С. 233-297.
  15. 15. Mennicken R., Shkalikov A.A. Spectral decomposition of symmetric operator matrices // Math. Nachr. 1996. V. 179. P. 259-273.
  16. 16. Азизов Т.Я., Копачевский Н.Д., Орлова Л.Д. Эволюционная и спектральная задачи, порождённые проблемой малых движений вязкоупругой жидкости // Тр. Санкт-Петербургского мат. о-ва. 1988. Т. 6. С. 5-33.
  17. 17. Крейн С.Г. Линейные дифференциальные уравнения в банаховом пространстве. М., 1967.
  18. 18. Gohberg I., Goldberg S., Kaashoek M.A. Classes of Linear Operators. V. 1. Basel; Boston; Berlin, 1990.
  19. 19. Волевич Л.Р. Разрешимость краевых задач для общих эллиптических систем // Мат. сб. 1965. Т. 68 (110). № 3. С. 373-416.
  20. 20. Кожевников А.Н. Функциональные методы математической физики. М., 1991.
  21. 21. Kozhevnikov A., Skubachevskaya T. Some applications of pseudo-differential operators to elasticity // Hokkaido Math. J. 1997. V. 26. № 2. P. 297-322.
  22. 22. Ланкастер П. Теория матриц. М., 1973.
  23. 23. Азизов Т.Я., Иохвидов И.С. Основы теории линейных операторов в пространствах с индефинитной метрикой. М., 1986.
  24. 24. Бирман М.Ш., Соломяк М.З. Асимптотика спектра дифференциальных уравнений // Итоги науки и техн. Сер. Мат. анализ. 1977. Т. 14. № 11. C. 5-58.
  25. 25. Маркус А.С., Мацаев В.И. Теорема о сравнении спектров и спектральная асимптотика для пучка М.В. Келдыша // Мат. сб. 1984. Т. 123 (165). № 3. С. 391-406.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека