RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

NUMERICAL SOLUTION OF INTEGRAL EQUATIONS OF THE THIRD KIND WITH FIXED SINGULARITIES OF THE KERNEL

PII
10.31857/S0374064125050095-1
DOI
10.31857/S0374064125050095
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 5
Pages
685-696
Abstract
A linear integral equation of the third kind with fixed singularities in the kernel is studied. For its approximate solution in the space of generalized functions, a special generalized spline method is proposed and substantiated. Optimality of the method in order of accuracy is proved.
Keywords
интегральное уравнение третьего рода пространство обобщённых функций приближённое решение
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Адамар, Ж. Задача Коши для линейных уравнений с частными производными гиперболического типа / Ж. Адамар. — М. : Наука, 1978. — 352 c.
  2. 2. Bart, G.R. Linear integral equations of the third-kind / G.R. Bart, R.L. Warnock // SIAM J. Math. Anal. — 1973. — V. 4, № 4. — P. 609–622.
  3. 3. Кейз, К.М. Линейная теория переноса / К.М. Кейз, П.Ф. Цвайфель. — М. : Мир, 1972. — 384 c.
  4. 4. Замалиев, Р.Р. О прямых методах решения интегральных уравнений третьего рода с особенностями ядра : дис. . . . канд. физ.-мат. наук / Р.Р. Замалиев. — Казань, 2012. — 114 с.
  5. 5. Расламбеков, С.Н. Сингулярное интегральное уравнение первого рода в исключительном случае в классах обобщённых функций / С.Н. Расламбеков // Изв. вузов. Математика. — 1983. — № 10. — С. 51–56.
  6. 6. Бжихатлов, Х.Г. Об одной краевой задаче со смещением / Х.Г. Бжихатлов // Дифференц. уравнения. — 1973. — Т. 9, № 1. — С. 162–165.
  7. 7. Габбасов, Н.С. Специальный прямой метод решения интегральных уравнений в особом случае / Н.С. Габбасов // Дифференц. уравнения. — 2014. — Т. 50, № 9. — С. 1245–1252.
  8. 8. Габбасов, Н.С. К численному решению интегральных уравнений третьего рода с особенностями в ядре / Н.С. Габбасов, З.Х. Галимова // Изв. вузов. Математика. — 2016. — № 12. — С. 36–45.
  9. 9. Габбасов, Н.С. Оптимальные по порядку методы решения интегральных уравнений в особом случае / Н.С. Габбасов, З.Х. Галимова // Изв. вузов. Математика. — 2017. — № 9. — С. 3–12.
  10. 10. Габбасов, Н.С. Специальный вариант метода коллокации для интегральных уравнений третьего рода с неподвижными особенностями в ядре / Н.С. Габбасов, З.Х. Галимова // Изв. вузов. Математика. — 2018. — № 5. — С. 20–27.
  11. 11. Габдулхаев, Б.Г. Оптимальные аппроксимации решений линейных задач / Б.Г. Габдулхаев. — Казань: Изд-во Казанск. ун-та, 1980. — 232 c.
  12. 12. Прессдорф, З. Сингулярное интегральное уравнение с символом, обращающимся в нуль в конечном числе точек / З. Прессдорф // Мат. исследования. — 1972. — Т. 7, № 1. — C. 116– 132.
  13. 13. Габбасов, Н.С. Методы решения интегральных уравнений Фредгольма в пространствах обобщённых функций / Н.С. Габбасов. — Казань : Изд-во Казанск. ун-та, 2006. — 176 c.
  14. 14. Габбасов, Н.С. Методы решения интегрального уравнения третьего рода с фиксированными особенностями в ядре / Н.С. Габбасов // Дифференц. уравнения. — 2009. — Т. 45, № 9. — С. 1341–1348.
  15. 15. Завьялов, Ю.С. Методы сплайн-функций / Ю.С. Завьялов, Б.И. Квасов, В.Л. Мирошниченко. — М. : Наука, 1980. — 352 c.
  16. 16. Стечкин, С.Б. Сплайны в вычислительной математике / С.Б. Стечкин, Ю.Н. Субботин. — М. : Наука, 1976. — 248 c.
  17. 17. Педас, А. Метод кубической сплайн-коллокации для решения слабо сингулярных интегральных уравнений / А. Педас, Э. Тимак // Дифференц. уравнения. — 2001. — Т. 37, № 10. — С. 1415– 1424.
  18. 18. Даугавет, И.К. Введение в теорию приближения функций / И.К Даугавет. — Л. : Изд-во ЛГУ, 1977. — 184 c.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library