RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

ON EXISTENCE OF PERIODIC SOLUTIONS OF AN ORDINARY SECOND-ORDER DIFFERENTIAL EQUATION WITH PARAMETER AND DISCONTINUOUS RIGHT-HAND SIDE WITH VARIOUS BOUNDARY CONDITIONS

PII
10.31857/S0374064125020016-1
DOI
10.31857/S0374064125020016
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 2
Pages
147-161
Abstract
An ordinary second-order differential equation with positive parameter and discontinuous right-hand side which changes its sign at the point of the jump is considered. Various boundary value problems for it are formulated, including mixed and periodic boundary conditions. Theorems on existence of periodic solutions of the studied boundary value problems are established. The obtained results are illustrated by examples.
Keywords
дифференциальное уравнение краевая задача разрывная правая часть периодическое решение
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Llibre, J. Periodic solutions of discontinuous second order differential systems / J. Llibre, M.A. Teixeira // J. Singularities. — 2014. — V. 10. — P. 183–190.
  2. 2. Bonanno, G. Sturm–Liouville equations involving discontinuous nonlinearities / G. Bonanno, G. D’Agui, P. Winkert // Minimax Theory Appl. — 2016. — V. 1, № 1. — P. 125–143.
  3. 3. Kamachkin, A.M. Existence of solutions for second-order differential equations with discontinuous right-hand side / A.M. Kamachkin, D.K. Potapov, V.V. Yevstafyeva // Electron. J. Differ. Equat. — 2016. — № 124. — P. 1–9.
  4. 4. Bensid, S. Stability results for discontinuous nonlinear elliptic and parabolic problems with a Sshaped bifurcation branch of stationary solutions / S. Bensid, J.I. Diaz // Disc. Contin. Dyn. Syst. Ser. B. — 2017. — V. 22, № 5. — P. 1757–1778.
  5. 5. Da Silva, C.E.L. Sliding solutions of second-order differential equations with discontinuous right-hand side / C.E.L. Da Silva, P.R. Da Silva, A. Jacquemard // Math. Meth. Appl. Sci. — 2017. — V. 40, № 14. — P. 5295–5306.
  6. 6. Павленко, В.Н. Задача Штурма–Лиувилля для уравнения с разрывной нелинейностью / В.Н. Павленко, Е.Ю. Постникова // Челяб. физ.-мат. журн. — 2019. — Т. 4, № 2. — С. 142–154.
  7. 7. Da Silva, C.E.L. Periodic solutions of a class of non-autonomous discontinuous second-order differential equations / C.E.L. Da Silva, A. Jacquemard, M.A. Teixeira // J. Dyn. Control Syst. — 2020. — V. 26, № 1. — P. 17–44.
  8. 8. О существовании периодического режима в одной нелинейной системе / А.С. Фурсов, Р.П. Митрев, П.А. Крылов, Т.С. Тодоров // Дифференц. уравнения. — 2021. — Т. 57, № 8. — С. 1104–1115.
  9. 9. Евстафьева, В.В. Периодические режимы в системе автоматического управления с трёхпозиционным гистерезисным реле / В.В. Евстафьева, А.М. Камачкин, Д.К. Потапов // Вестн. С.-Петербург. ун-та. Прикл. математика. Информатика. Процессы управления. — 2022. — Т. 18, № 4. — С. 596–607.
  10. 10. Басков, О.В. Управление и возмущение в задаче Штурма–Лиувилля с разрывной нелинейностью / О.В. Басков, Д.К. Потапов // Вестн. С.-Петербург. ун-та. Прикл. математика. Информатика. Процессы управления. — 2023. — Т. 19, № 2. — С. 275–282.
  11. 11. Басков, О.В. О решениях краевой задачи для одного дифференциального уравнения второго порядка с параметром и разрывной правой частью / О.В. Басков, Д.К. Потапов // Журн. вычислит. математики и мат. физики. — 2023. — Т. 63, № 8. — С. 1296–1308.
  12. 12. Евстафьева, В.В. Об одном типе колебательных решений обыкновенного дифференциального уравнения второго порядка с трёхпозиционным гистерезисным реле и возмущением / В.В. Евстафьева, А.М. Камачкин, Д.К. Потапов // Дифференц. уравнения. — 2023. — Т. 59, № 2. — С. 150–163.
  13. 13. Евстафьева, В.В. Колебательные решения обыкновенного дифференциального уравнения второго порядка с трёхпозиционным гистерезисным реле без выхода в зоны насыщения / В.В. Евстафьева // Дифференц. уравнения. — 2023. — Т. 59, № 6. — С. 712–725.
  14. 14. Потапов, Д.К. Аппроксимация задачи Штурма–Лиувилля с разрывной нелинейностью / Д.К. Потапов // Дифференц. уравнения. — 2023. — Т. 59, № 9. — С. 1191–1198.
  15. 15. Басков, О.В. О решениях одномерной задачи Гольдштика / О.В. Басков, Д.К. Потапов // Мат. заметки. — 2024. — Т. 115, № 1. — С. 14–23.
  16. 16. Temam, R. A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma / R. Temam // Arch. Ration. Mech. Anal. — 1975. — V. 60. — P. 51–73.
  17. 17. Fraenkel, L.E. A global theory of steady vortex rings in an ideal fluid / L.E. Fraenkel, M.S. Berger // Acta Math. — 1974. — V. 132, № 1. — P. 13–51.
  18. 18. Stakgold, I. Free boundary problems in climate modeling / I. Stakgold // Mathematics, Climate and Environment / Eds. J.I. D´ıaz, J.L. Lions. — Paris : Masson, 1993. — P. 177–188.
  19. 19. Bensid, S. Multiple stationary solutions of parabolic problem with discontinuous nonlinearities and their stability / S. Bensid, Z. Kaid // Complex Var. Elliptic Equat. — 2021. — V. 66, № 3. — P. 487–506.
  20. 20. Bonanno, G. On ordinary differential inclusions with mixed boundary conditions / G. Bonanno, A. Iannizzotto, M. Marras // Differ. Integral Equat. — 2017. — V. 30, № 3–4. — P. 273–288.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library