RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

ON THE SOLVABILITY OF A SYSTEM OF MULTIDIMENSIONAL INTEGRAL EQUATIONS WITH CONCAVE NONLINEARITIES

PII
10.31857/S0374064125010075-1
DOI
10.31857/S0374064125010075
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 1
Pages
84-98
Abstract
The work is devoted to the study of questions of existence and uniqueness of a continuous bounded and positive solution to one system of nonlinear multidimensional integral equations. The scalar analogue of the indicated system of integral equations, with different representations of the corresponding matrix kernel and nonlinearities, has important applied significance in a number of areas of physics and biology. This article proposes a special iterative approach for constructing a positive continuous and bounded solution to the system under study. It is possible to prove that the corresponding iterations uniformly converge to a continuous solution of the specified system. Using some a priori estimates for strictly concave functions, we also prove the uniqueness of the solution in a fairly wide subclass of continuous bounded and coordinately nonnegative vector functions. In the case when the integral of the matrix kernel has a unit spectral radius, it is proved that in a certain subclass of continuous bounded and coordinate-wise non-negative vector functions, this system has only a trivial solution, which is an eigenvector of the kernel integral matrix.
Keywords
нелинейное интегральное уравнение система интегральных уравнений положительное решение непрерывное решение ограниченное решение тривиальное решение итерационный процесс
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Ланкастер, П. Теория матриц / П. Ланкастер ; пер. с англ. С.П. Демушкина. — М. : Наука, 1973. — 280 с.
  2. 2. Lancaster, P., Theory of Matrices, New York; London: Academic Press, 1969.
  3. 3. Владимиров, В.С. О нелинейном уравнении динамики в теории
  4. 4. Vladimirov, V.S. and Volovich, Ya.I., Nonlinear dynamics equation in
  5. 5. Хачатрян, Х.А. О разрешимости некоторых классов нелинейных интегральных уравнений в теории
  6. 6. Khachatryan, Kh.A., On the solubility of certain classes of non-linear integral equations in
  7. 7. Арефьева, И.Я. Скатывающиеся решения полевых уравнений на неэкстремальных бранах и в
  8. 8. Aref’eva, I.Ya., Rolling tachyon on non-BPS branes and
  9. 9. Khachatryan, A.Kh. Solvability of a class of nonlinear pseudo-differential equations in R
  10. 10. Atkinson, C. Deterministic epidemic waves / C. Atkinson, G.E.H. Reuter // Math. Proc. Cambridge Philos. Soc. — 1976. — V. 80. — P. 315–330.
  11. 11. Diekmann, O. Threshold and travelling waves for the geographical spread of infection / O. Diekmann // J. Math. Biol. —1978. — V. 6, № 2. — P. 109–130.
  12. 12. Петросян, А.С. Единственность решения одной системы интегральных уравнений на полуоси с выпуклой нелинейностью / А.С. Петросян, Ц.Э. Терджян, Х.А. Хачатрян // Мат. тр. — 2020. — Т. 23, № 2. — С. 187–203.
  13. 13. Petrosyan, H.S., Terdzhyan, Ts.E., and Khachatryan, Kh.A., Uniqueness of the solution of one system of integral equations on the semi-axis with convex nonlinearity, Matematicheskie Trudy, 2020, vol. 23, no. 2, pp. 187–203.
  14. 14. Хачатрян, Х.А. О разрешимости одной системы сингулярных интегральных уравнений с выпуклой нелинейностью на положительной полупрямой / Х.А. Хачатрян, А.С. Петросян // Изв. вузов. Математика. — 2021. — № 1. — С. 31–51.
  15. 15. Khachatryan, Kh.A. and Petrosyan, H.S., Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line, Russ. Math., 2021, vol. 65, no. 1, pp. 27–46.
  16. 16. Хачатрян, Х.А. О разрешимости одной системы нелинейных интегральных уравнений типа Гаммерштейна на прямой / Х.А. Хачатрян // Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика. — 2019. — Т. 19, № 2. — С. 164–181.
  17. 17. Khachatryan, Kh.A., The solvability of a system of nonlinear integral equations of Hammerstein type on the whole line, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2019, vol. 19, no. 2, pp. 164–181.
  18. 18. Khachatryan, Kh.A. Alternating bounded solutions of a class of nonlinear two-dimensional convolutiontype integral equations / Kh.A. Khachatryan, A.S. Petrosyan // Trans. Moscow Math. Soc. — 2021. — V. 82, № 2. — P. 259–271.
  19. 19. Khachatryan, Kh.A. On bounded solutions of a class of nonlinear integral equations in the plane and the Urysohn equation in a quadrant of the plane / Kh.A. Khachatryan, H.S. Petrosyan // Ukr. Math. J. — 2021. — V. 73, № 5. — P. 811–829.
  20. 20. Хачатрян, Х.А. Об одном классе многомерных интегральных уравнений типа свёртки с выпуклой нелинейностью / Х.А. Хачатрян, А.С. Петросян // Дифференц. уравнения. — 2022. — Т. 58, № 5. — С. 686–695.
  21. 21. Khachatryan, Kh.A. and Petrosyan, H.S., On one class of multidimensional integral equations of convolution type with convex nonlinearity, Differ. Equat., 2022, vol. 58, no. 5, pp. 680–690.
  22. 22. Арабаджян, Л.Г. Решения одного интегрального уравнения типа Гаммерштейна / Л.Г. Арабаджян // Изв. НАН Армении. Сер. Математика. — 1997. — Т. 32, № 1. — С. 21–28.
  23. 23. Arabadzhyan, L.G., Solutions of certain integral equations of the Hammerstein type, J. Contemp. Math. Anal., 1997, vol. 32, no. 1, pp. 17–24.
  24. 24. Жуковская, Л.В. Итерационный метод решения нелинейных интегральных уравнений, описывающих роллинговые решения в теории струн / Л.В. Жуковская // Теор. мат. физика. — 2006. — Т. 146, № 3. — С. 402–409.
  25. 25. Zhukovskaya, L.V., Iterative method for solving nonlinear integral equations describing rolling solutions in string theory, Theor. Math. Phys., 2006, vol. 146, no. 3, pp. 335–342.
  26. 26. Хачатрян, Х.А. Существование и единственность решения одной граничной задачи для интегрального уравнения свертки с монотонной нелинейностью / Х.А. Хачатрян // Изв. РАН. Сер. матем. — 2020. — Т. 84, № 4. — С. 198–207.
  27. 27. Khachatryan, Kh.A., Existence and uniqueness of solution of a certain boundary-value problem for a convolution integral equation with monotone non-linearity, Izv. Math., 2020, vol. 84, no. 4, pp. 807–815.
  28. 28. Хачатрян, Х.А. О разрешимости некоторых нелинейных граничных задач для сингулярных интегральных уравнений типа свертки / Х.А. Хачатрян // Тр. Моск. мат. об-ва. — 2020. — Т. 81, № 1. — С. 3–40.
  29. 29. Khachatryan, Kh.A., Solvability of some nonlinear boundary value problems for singular integral equations of convolution type, Trans. Moscow Math. Soc., 2020, vol. 81, no. 1, pp. 1–31.
  30. 30. Колмогоров, А.Н. Элементы теории функций и функционального анализа / А.Н. Колмогоров, С.В. Фомин. — 4-е изд., перераб. — М. : Наука, 1976. — 543 с.
  31. 31. Kolmogorov, A.N. and Fomin, S.V., Introductory Real Analysis, Englewood Cliffs: Prentice-Hall, 1970.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library