- Код статьи
- 10.31857/S0374064125010021-1
- DOI
- 10.31857/S0374064125010021
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 61 / Номер выпуска 1
- Страницы
- 13-21
- Аннотация
- Исследованы неустойчивость и устойчивость решений стохастической системы уравнений, описывающей течение вязкоупругой жидкости. При определённых значениях параметров, входящих в уравнения, показано существование неустойчивого и устойчивого инвариантных пространств. Для неустойчивого случая решена задача стабилизации на основе принципа обратной связи.
- Ключевые слова
- стохастическое уравнение соболевского типа инвариантное пространство стабилизация
- Дата публикации
- 18.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 8
Библиография
- 1. Осколков, А.П. Начально-краевые задачи для уравнений движения жидкостей Кельвина–Фойгта и Олдройта / А.П. Осколков // Тр. Мат. ин-та им. В.А. Стеклова. — 1988. — Т. 179. — С. 126–164.
- 2. Oskolkov, A.P., Initial boundary value problems for equations of motion of Kelvin–Voigt and Oldroit fluids, Trudi Mat. in-ta AN SSSR, 1988, vol. 179, pp. 126–164.
- 3. Течения полимерных растворов при наличии конвективных ускорений / В.Б. Амфилохиев, Я.И. Войткунский, Н.П. Мазаева, Я.И. Ходорковский // Тр. Ленингр. кораблестроит. ин-та. — 1975. — Т. 96. — С. 3–9.
- 4. Amfilohiev, V.B., Voitkunsky, Ya.I., Mazaeva, N.P., and Khodorkovskii, Ya.I., Flows of polymer structures in the presence of convective accelerations, Tr. Leningr. korablestr. in-ta, 1975, vol. 96, pp. 3–9.
- 5. Turning bacteria suspensions into superfluids / H.M. Lopez, J. Gachelin, C. Douarche [et al.] // Phys. Rev. Lett. — 2015. — V. 115. — Art. 028301.
- 6. Малкин, А.Я. Неустойчивость при течении растворов и расплавов полимеров / А.Я. Малкин // Высокомол. соед. Сер. С. — 2006. — T. 48, № 7. — C. 1241–1262.
- 7. Malkin, A.Ya., Instability during the flow of solutions and melts of polymers, High Molecular Weight Compounds. Series C, 2006, vol. 48, no. 7, pp. 1241–1262.
- 8. Gliklikh, Yu.E. Global and Stochastic Analysis with Applications to Mathematical Physics / Yu.E. Gliklikh. — London ; Dordrecht ; Heidelberg ; New York : Springer, 2011. — 436 p.
- 9. Свиридюк, Г.А. Динамические модели соболевского типа с условием Шоуолтера–Сидорова и аддитивными “шумами” / Г.А. Свиридюк, Н.А. Манакова // Вестн. Южно-Урал. гос. ун-та. Сер. Мат. моделирование и программирование. — 2014. — Т. 7, № 1. — С. 90–103.
- 10. Sviridyuk, G.A. and Manakova, N.A., Dynamic models of the Sobolev type with the Showalter–Sidorov condition and additive “noises”, Bull. of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2014, vol. 7, no. 1, pp. 90–103.
- 11. Favini, A. Linear Sobolev type equations with relatively
- 12. Favini, A. Linear Sobolev type equations with relatively
- 13. Favini, A. One class of Sobolev type equations of higher order with additive “white noise” / A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva // Commun. Pure Appl. Anal. — 2016. — V. 15, № 1. — P. 185–196.
- 14. Favini, A. Multipoint initial-final value problem for dynamical Sobolev-type equation in the space of noises / A. Favini, S.A. Zagrebina, G.A. Sviridyuk // Electron. J. Differ. Equat. — 2018. — V. 2018, № 128. — P. 1–10.
- 15. Favini, A. The multipoint initial-final value condition for the Hoff equations on geometrical graph in spaces of
- 16. Kitaeva, O.G. Invariant spaces of Oskolkov stochastic linear equations on the manifold / O.G. Kitaeva // Вестн. Южно-Урал. гос. ун-та. Сер. Математика. Механика. Физика. — 2021. — Т. 13, № 2. — С. 5–10.
- 17. Kitaeva, O.G., Invariant spaces of Oskolkov stochastic linear equations on the manifold, Bull. of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2021, vol. 13, no. 2, pp. 5–10.
- 18. Kitaeva, O.G. Exponential dichotomies of a non-classical equations of differential forms on a twodimensional torus with “noises” / O.G. Kitaeva // J. Comp. Engineer. Math. — 2019. — V. 6, № 3. — P. 26–38.
- 19. Kitaeva, O.G. Stable and unstable invariant spaces of one stochastic non-classical equation with a relatively radial operator on a 3-torus / O.G. Kitaeva // J. Comp. Engineer. Math. — 2020. — V. 7, № 2. — P. 40–49.
- 20. Kitaeva, O.G. Exponential dichotomies of a stochastic non-classical equation on a two-dimensional sphere / O.G. Kitaeva // J. Comp. Engineer. Math. — 2021. — V. 8, № 1. — P. 60–67.
- 21. Свиридюк, Г.А. Об одной модели динамики несжимаемой вязкоупругой жидкости / Г.А. Свиридюк // Изв. вузов. Математика. — 1988. — № 1. — C. 74–79.
- 22. Sviridyuk, G.A., On a model of the dynamics of an incompressible viscoelastic fluid, Izv. vuzov. Matematika, 1988, no. 1, pp. 74–79.
- 23. Yakupov, M.M. The Oskolkov System with a multipoint initial-final value condition / M.M. Yakupov, A.S. Konkina // J. Comp. Engineer. Math. — 2022. — V. 9, № 4. — P. 44–50.
- 24. Свиридюк, Г.А. Задачи Шоуолтера–Сидорова и Коши для линейного уравнения Дзекцера с краевыми условиями Вентцеля и Робена в ограниченной области / Г.А. Свиридюк, Н.С. Гончаров, С.А. Загребина // Вестн. Южно-Урал. гос. ун-та. Сер. Математика. Механика. Физика. — 2022. — Т. 14, № 1. — С. 50–63.
- 25. Sviridyuk, G.A., Goncharov, N.S., and Zagrebina, S.A., Showalter–Sidorov and Cauchy problems for the Dzekzer linear equation with Wentzel and Robin boundary conditions in a bounded domain, Bull. of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2022, vol. 14, no. 1, pp. 50–63.