ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

ОБ УСТОЙЧИВОСТИ ПО НЕЛИНЕЙНОМУ НЕСТАЦИОНАРНОМУ ГИБРИДНОМУ ПРИБЛИЖЕНИЮ

Код статьи
10.31857/S0374064124120056-1
DOI
10.31857/S0374064124120056
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 60 / Номер выпуска 12
Страницы
1640-1652
Аннотация
Исследовано влияние нестационарных возмущений на устойчивость нелинейных неавтономных систем с переключениями и импульсными эффектами. Получены достаточные условия, гарантирующие асимптотическую устойчивость заданного положения равновесия исходной системы, а также установлены ограничения, при выполнении которых асимптотическая устойчивость сохраняется при действующих на систему возмущениях. Отметим, что нестационарности, присутствующие как в самой системе, так и в возмущениях, могут описываться неограниченными по времени функциями, а также функциями, сколь угодно близко приближающимися к нулю. Предполагаем, что базовая система является однородной по вектору состояния. Для нахождения требуемых результатов использован второй метод Ляпунова в сочетании с теорией дифференциальных неравенств.
Ключевые слова
нестационарная импульсная система с переключениями возмущение устойчивость
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
9

Библиография

  1. 1. Зубов, В.И. Математические методы исследования систем автоматического регулирования / В.И. Зубов. — Л. : Машиностроение, 1974. — 335 с.
  2. 2. Zubov, V.I., Mathematical Methods for the Study of Automatic Control Systems, Oxford; New York: Pergamon Press, 1962.
  3. 3. Liberzon, D. Switching in Systems and Control / D. Liberzon. — Boston : Birkh‥ auser, 2003. — 233 p.
  4. 4. Lakshmikantham, V. Theory of Impulsive Differential Equations / V. Lakshmikantham, D.D. Bainov, P.S. Simeonov. — Singapore : World Scientific, 1989. — 288 p.
  5. 5. Lu, J. Average dwell time based stability analysis for nonautonomous continuous-time switched systems / J. Lu, Z. She // Int. J. Robust Nonl. Control. — 2019. — V. 29, № 8. — P. 2333–2350.
  6. 6. Stabilisability of time-varying switched systems based on piecewise continuous scalar functions / J. Lu, Z. She, W. Feng, S.S. Ge // IEEE Trans. on Automatic Control. — 2019. — V. 64, № 6. — P. 2637–2644.
  7. 7. Finite-time stability and asynchronously switching control for a class of time-varying switched nonlinear systems / R. Wang, J. Xing, Z. Xiang, Q. Yang // Trans. of the Institute of Measurement and Control. — 2019. — V. 42, № 6. — P. 1215–1224.
  8. 8. Unified stability criteria for slowly time-varying and switched linear systems / X. Gao, D. Liberzon, J. Liu, T. Basar // Automatica. — 2018. — V. 96. — P. 110–120.
  9. 9. Platonov, A.V. Stability conditions for some classes of time-varying switched systems / A.V. Platonov // Int. J. Syst. Science. — 2022. — V. 35, № 10. — P. 2235–2246.
  10. 10. Aleksandrov, A.Yu. On the asymptotic stability of switched homogeneous systems / A.Yu. Aleksandrov, A.A. Kosov, A.V. Platonov // Syst. Control Lett. — 2012. — V. 61, № 1. — P. 127–133.
  11. 11. Zhang, J. Global asymptotic stabilisation for switched planar systems / J. Zhang, Z. Han, J. Huang // Int. J. Syst. Science. — 2015. — V. 46, № 5. — P. 908–918.
  12. 12. Aleksandrov, A. Stability analysis of switched homogeneous time-delay systems under synchronous and asynchronous commutation / A. Aleksandrov, D. Efimov // Nonlin. Anal. Hybrid Syst. — 2021. — V. 42. — Art. 101090.
  13. 13. Liu, X. Links between different stabilities of switched homogeneous systems with delays and uncertainties / X. Liu, D. Liu // Int. J. Robust Nonl. Control. — 2016. — V. 26, № 1. — P. 174–184.
  14. 14. On robust stability of switched homogeneous systems / H. Yang, D. Zhao, B. Jiang, S. Ding // IET Control Theory & Applications. — 2021. — V. 15, № 5. — P. 758–770.
  15. 15. Rosier, L. Homogeneous Lyapunov function for homogeneous continuous vector field / L. Rosier // Syst. Control Lett. — 1992. — V. 19, № 6. — P. 467–473.
  16. 16. Александров, А.Ю. Об устойчивости решений нелинейных систем с неограниченными возмущениями / А.Ю. Александров // Мат. заметки. — 1998. — Т. 63, № 1. — С. 3–8.
  17. 17. Aleksandrov, A.Yu., Stability of solutions of nonlinear systems with unbounded perturbations, Math. Notes, 1996, vol. 63, no. 1, pp. 3–8.
  18. 18. Платонов, А.В. Исследование устойчивости решений нелинейных систем с неограниченными возмущениями / А.В. Платонов // Дифференц. уравнения. — 1999. — Т. 35, № 12. — C. 1707–1708.
  19. 19. Platonov, A.V., Issledovanie ustoichivostyi reshenii nelineinyh sistem s neogranichennyimi vozmush’eniyami, Differ. Uravn., 1999, vol. 35, no. 12, pp. 1707–1708.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека