RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

ON FEEDBACK CONTROL SYSTEMS GOVERNED BY FRACTIONAL DIFFERENTIAL INCLUSIONS

PII
10.31857/S0374064124110067-1
DOI
10.31857/S0374064124110067
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 11
Pages
1499-1518
Abstract
For feedback systems governed by fractional semilinear differential inclusions and a sweeping process in a Hilbert space, controllability conditions are found. For the proof, topological methods of nonlinear analysis for multivalued condensing maps are used.
Keywords
задача управляемости дифференциальное включение sweeping процесс дробная производная уплотняющее отображение мера некомпактности
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Balachandran, K. Controllability of nonlinear systems in Banach spaces: a survey / K. Balachandran, J.P. Dauer //J. Optim. Theory Appl. — 2002. — V. 115. — P. 7-28.
  2. 2. Benedetti, I. Controllability for impulsive semilinear functional differential inclusions with a noncompact evolution operator / I. Benedetti, V. Obukhovskii, P. Zecca // Discuss. Math. Differ. Incl. Control Optim. — 2011. — V. 31. — P. 39-69.
  3. 3. Gorniewicz, L. Controllability of semilinear differential equations and inclusions via semigroup theory in Banach spaces / L. Gorniewicz, S.K. Ntouyas, D. O’Regan // Rep. Math. Phys. — 2005. — V. 56. — P. 437-470.
  4. 4. Monteiro Marques, M.D.P. Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction / M.D.P. Monteiro Marques // Progress Nonlin. Differ. Equat. Appl. — 1993. — V. 9.
  5. 5. Valadier, M. Rafle et viabilite / M. Valadier // Sem. Anal. Convexe Exp. — 1992. — V. 22, № 17.
  6. 6. Edmond, J.F. Relaxation of an optimal control problem involving a perturbed sweeping process / J.F. Edmond, L. Thibault // Math. Program. Ser. B. — 2005. — V. 104. — P. 347-373.
  7. 7. Толстоногов, А.А. Локальные условия существования решений процессов выметания / А.А. Тол-стоногов // Мат. сб. — 2019. — Т. 210, № 9. — С. 107-128.
  8. 8. Kilbas, A.A. Theory and Applications of Fractional Differential Equations / A.A. Kilbas, H.M. Sriva-stava, J.J. Trujillo. — Amsterdam : Elsevier Science B.V., North-Holland Mathematics Studies, 2006.
  9. 9. Podlubny, I. Fractional Differential Equations / I. Podlubny. — San Diego : Academic Press, 1999.
  10. 10. Gomoyunov, M.I. Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems / M.I. Gomoyunov // Fract. Calc. Appl. Anal. — 2018. — V. 21. — P. 1238-1261.
  11. 11. On semilinear fractional differential inclusions with a nonconvex-valued right-hand side in Banach spaces / V. Obukhovskii, G. Petrosyan, C.F. Wen, V. Bocharov // J. Nonlin. Var. Anal. — 2022. — V. 6, № 3. — P. 185-197.
  12. 12. Петросян, Г.Г. О краевой задаче для класса дифференциальных уравнений дробного порядка типа Ланжевена в банаховом пространстве / Г.Г. Петросян // Вестн. Удмурт. ун-та. Математика. Механика. Компьют. науки. — 2022. — Т. 32, № 3. — С. 415-432.
  13. 13. Zhou, Y. Existence of mild solutions for fractional neutral evolution equations / Y. Zhou, F. Jiao // Comput. Math. Appl. — 2010. — V. 59. — P. 1063-1077.
  14. 14. Kamenskii, M. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces / M. Kamenskii, V. Obukhovskii, P. Zecca. — Berlin ; New-York : Walter de Gruyter, 2001.
  15. 15. Введение в теорию многозначных отображений и дифференциальных включений / Ю.Г. Борисович, Б.Д. Гельман, А.Д. Мышкис, В.В. Обуховский. — М. : Книжный дом “Либроком”, 2011. — 224 с.
  16. 16. Mainardi, F. On the initial value problem for the fractional diffusion-wave equation / F. Mainardi, S. Rionero, T. Ruggeri // Waves and Stability in Continuous Media. — 1994. — P. 246-251.
  17. 17. Nigmatullin, R.R. The realization of the generalized transfer equation in a medium with fractal geometry / R.R. Nigmatullin // Phys. Status Solidi B. — 1986. — V. 133. — P. 425-430.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library