RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

ITERATIVE SEQUENCES OF THE LOCALIZATION METHOD

PII
10.31857/S0374064124110037-1
DOI
10.31857/S0374064124110037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 11
Pages
1460-1470
Abstract
The conditions of positive invariance and compactness of localizing sets and extended localizing sets are proved. The necessary condition for the existence of an attractor in the system is obtained. The concept of an iterative sequence of extended localizing sets is introduced and a condition is obtained under which its elements are positively invariant compact sets and give an estimate of the attraction set. Using the obtained results the behavior of the trajectories of a three-dimensional system for acceptable values of its parameters is investigated. The conditions of global stability of one of its equilibrium point are found and the set of attraction of another equilibrium point is indicated.
Keywords
положительно инвариантное множество локализующая функция локализующее множество компактное инвариантное множество аттрактор предельная границ
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Крищенко, А.П. Локализация инвариантных компактов динамических систем / А.П. Крищен-ко // Дифференц. уравнения. — 2005. — Т. 41, № 12. — С. 1597-1604.
  2. 2. Starkov, K.E. Cancer cell eradication in a 6D metastatic tumor model with time delay / K.E. Starkov, A.N. Kanatnikov // Commun. Nonlin. Sci. Numer. Simul. — 2023. — V. 120. — Art. 107164.
  3. 3. Kanatnikov, A.N. Ultimate dynamics of the two-phenotype cancer model: attracting sets and global cancer eradication conditions / A.N. Kanatnikov, K.E. Starkov // Mathematics. — 2023. — V. 11, № 20. — Art. 4275.
  4. 4. Крищенко, А.П. Бифуркация Хопфа в системе хищник-жертва с инфекцией / А.П. Крищенко, О.А. Поддерегин // Дифференц. уравнения. — 2023. — Т. 59, № 11. — C. 1566-1570.
  5. 5. Крищенко, А.П. Поведение траекторий систем с положительными переменными / А.П. Кри-щенко, Е.С. Тверская // Дифференц. уравнения. — 2020. — Т. 56, № 11. — C. 1439-1446.
  6. 6. Starkov, K.E. On the dynamics of immune-tumor conjugates in a four-dimensional tumor model / K.E. Starkov, A.P. Krishchenko // Mathematics. — 2024. — V. 12, № 6. — Art. 843.
  7. 7. Analysis of immunotherapeutic control of the TH1/TH2 imbalance in a 4D melanoma model applying the invariant compact set localization method / M.N. Gomez-Guzman, E. Inzunza-Gonzalez, E. Palomino-Vizcaino [et al.] // Alex. Eng. J. — 2024. — V. 107. — P. 838-850.
  8. 8. Gamboa, D. Ultimate bounds for a diabetes mathematical model considering glucose homeostasis / D. Gamboa, L.N. Coria, P.A. Valle // Axioms. — 2022. — V. 11, № 7. — Art. 320.
  9. 9. Starkov, K.E. Dynamic analysis of the melanoma model: from cancer persistence to its eradication / K.E. Starkov, L.J. Beristain // Int. J. Bifur. Chaos. — 2017. — V. 27. — Art. 1750151.
  10. 10. Krishchenko, A.P. Estimations of domains with cycles / A.P. Krishchenko // Comput. Math. Appl. — 1997. — V. 34, № 3-4. — P. 325-332.
  11. 11. Khalil, H.K. Nonlinear Systems / H.K. Khalil. — 3rd edn. — Upper Saddle River : Prentice Hall, 2002. — 750 p.
  12. 12. Beay, L.K. A stage-structure Rosenzweig-MacArthur nodel with effect of prey refuge / L.K. Beay, M. Saija // Jambura J. Biomath. — 2020. — V. 1, № 1. — P. 1-7.
  13. 13. Арнольд, В.И. Обыкновенные дифференциальные уравнения / В.И. Арнольд — М. : МЦНМО, 2012. — 341 с.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library