ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

СХОДИМОСТЬ МЕТОДА КУСОЧНО-ЛИНЕЙНЫХ АППРОКСИМАЦИЙ И КОЛЛОКАЦИЙ ДЛЯ ДВУМЕРНОГО ГИПЕРСИНГУЛЯРНОГО ИНТЕГРАЛЬНОГО УРАВНЕНИЯ НА МНОЖЕСТВЕ С ГРАНИЦЕЙ

Код статьи
10.31857/S0374064124090096-1
DOI
10.31857/S0374064124090096
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 60 / Номер выпуска 9
Страницы
1276-1296
Аннотация
Рассмотрено гиперсингулярное интегральное уравнение на выпуклом ограниченном множестве на плоскости с интегралом, понимаемым в смысле конечной части по Адамару. Уравнения такого типа, в частности, возникают при решении краевой задачи Неймана для уравнений Лапласа и Гельмгольца на плоском экране в случае, когда решение ищется в виде потенциала двойного слоя. Для численного решения уравнения применена численная схема, основанная на кусочно-линейной аппроксимации неизвестной функции по треугольной конформной сетке и методе коллокаций. Доказана равномерная сходимость численных решений к точному на сетке при стремлении максимального диаметра ячеек к нулю.
Ключевые слова
численные методы гиперсингулярный интеграл интегральное уравнение квадратурная формула
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
8

Библиография

  1. 1. Лифанов, И.К. Метод сингулярных интегральных уравнений и численный эксперимент / И.К. Лифанов.— М. : Янус, 1995. — 520 с.
  2. 2. Сетуха, А.В. Трёхмерная краевая задача Неймана с обобщёнными граничными условиями и уравнение Прандтля / А.В. Сетуха // Дифференц. уравнения. — 2003. — Т. 39, № 9. — С. 1208–1208.
  3. 3. Вайникко, Г.М. Численные методы в гиперсингулярных интегральных уравнениях и их приложения / Г.М. Вайникко, И.К. Лифанов, Л.Н. Полтавский. — М. : Янус, 2001. — 508 с.
  4. 4. О численном решении двумерного гиперсингулярного интегрального уравнения и о распространении звука в городской застройке / В.А. Гутников, В.Ю. Кирякин, И.К. Лифанов, А.В. Сетуха // Журн. вычислит. математики и мат. физики. — 2007. — Т. 47, № 12. — С. 2088–2100.
  5. 5. Даева, С.Г. О численном решении краевой задачи Неймана для уравнения Гельмгольца методом гиперсингулярных интегральных уравнений / С.Г. Даева, А.В. Сетуха // Вычислит. методы и программирование. — 2015. — Т. 16. — С. 421–435.
  6. 6. Daeva, S.G. Numerical simulation of scattering of acoustic waves by inelastic bodies using hypersingular boundary integral equation / S.G. Daeva, A.V. Setukha // AIP Conf. Proc. — 2015. — V. 1648. — P. 390004-1–390004-4.
  7. 7. Лебедева, С.Г. О численном решении полного двумерного гиперсингулярного интегрального уравнения методом дискретных особенностей / С.Г. Лебедева, А.В. Сетуха // Дифференц. уравнения. — 2013. — Т. 49, № 2. — С. 223–233.
  8. 8. Сетуха, А.В. Сходимость метода кусочно-линейных аппроксимаций и коллокаций для некоторого гиперсингулярного интегрального уравнения на замкнутой поверхности / А.В. Сетуха, А.В. Семенова // Дифференц. уравнения. — 2017. — Т. 53, № 9. — С. 1265–1280.
  9. 9. Сетуха, А.В. О численном решении некоторого поверхностного интегрального уравнения методами кусочно-линейных аппроксимаций и коллокаций / А.В. Сетуха, А.В. Семенова // Журн. вычислит. математики и мат. физики. — 2019. — Т. 59, № 6. — С. 990–1006.
  10. 10. Сетуха, А.В. Метод граничных интегральных уравнений с гиперсингулярными интегралами в краевых задачах / А.В. Сетуха // Итоги науки и техники. Серия Совр. математика и её приложения. Темат. обзоры. — 2019. — Т. 160. — С. 114–125.
  11. 11. Сетуха, А.В. Метод интегральных уравнений в математической физике / А.В. Сетуха. — М. : Изд-во Моск. ун-та, 2023. — 316 с.
  12. 12. Канторович, Л.В. Функциональный анализ и прикладная математика / Л.В. Канторович // Успехи мат. наук. — 1948. — Т. 3, № 6 (28). — С. 89–185.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека