RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

ON THE DETERMINATION OF THE STATIONARY TEMPERATURE IN AN UNLIMITED STRIP

PII
10.31857/S0374064124080047-1
DOI
10.31857/S0374064124080047
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 8
Pages
1049-1062
Abstract
The problem of determining the stationary temperature at the upper boundary of the strip under known conditions at the lower boundary is considered. The existence and uniqueness of the solution to this problem are proved.
Keywords
эллиптическое уравнение задача Коши аналитическая функция
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Тихонов, А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. — М. : Наука, 1966. — 724 с.
  2. 2. Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, New Haven: Yale University Press; London: Humphrey Milford; Oxford: University Press, 1923.
  3. 3. Alessandrini, G., Rondi, L., Rosset, E., and Vessella, S., The stability for the Cauchy problem for elliptic equations, arXiv:0907.2882v1[math.AP] 16 Jul 2009.
  4. 4. Лаврентьев, М.М. О задаче Коши для уравнения Лапласа / М.М. Лаврентьев. — Изв. АН СССР. Сер. математическая. — 1956. — Т. 20, № 6. — С. 819-842.
  5. 5. Мизохата, С. Теория уравнений с частными производными / С. Мизохата ; пер. с яп. Ю.В. Егорова ; под ред. О.А. Олейник. — М. : Мир, 1977. — 504 с.
  6. 6. Кальменов, Т.Ш. Критерий сильной разрешимости смешанной задачи Коши для уравнения Лапласа / Т.Ш. Кальменов, У.А. Искакова // Дифференц. уравнения. — 2009. — Т. 45, № 10. — С. 1460-1466.
  7. 7. Kabanikhin, S.I., Inverse and Ill-posed Problems: Theory and Applications, Berlin; Boston: Springer, 2010.
  8. 8. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., and Yagola, A.G., Numerical Methods for the Solution of Ill-Posed Problems, Kluwer Academic Publishers, 1995.
  9. 9. Alimov, Sh.A. and Qudaybergenov, A.K., Determination of temperature at the outer boundary of a body, J. Math. Sci., 2023, vol. 274, no. 2, pp. 159-171.
  10. 10. Ильин, В.А. Спектральная теория дифференциальных операторов. Самосопряженные дифференциальные операторы / В.А. Ильин. — М. : Наука, 1991. — 366 с.
  11. 11. Наймарк, М.А. Линейные дифференциальные операторы / М.А. Наймарк. — М. : Наука, 1969. — 528 с.
  12. 12. Садовничий, В.А. Теория операторов. 5-е изд. / В.А. Садовничий. — М. : Изд-во Моск. ун-та, 2004. — 384 с.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library