RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

CONSTRUCTING DIAGONAL LYAPUNOV–KRASOVSKII FUNCTIONALS FOR A CLASS OF POSITIVE DIFFERENTIAL-ALGEBRAIC SYSTEMS

PII
10.31857/S0374064124050013-1
DOI
10.31857/S0374064124050013
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 5
Pages
579-589
Abstract
A coupled system describing the interaction of a differential subsystem with nonlinearities of a sector type and a linear difference subsystem is considered. It is assumed that the system is positive. A diagonal Lyapunov–Krasovskii functional is constructed and conditions are determined under which the absolute stability of the investigated system can be proved with the aid of such a functional. In the case of nolinearities of the power form, estimates for the convergence rate of solution to the origin are derived. The stability analysis of the corresponding system with parameter switching is fulfiled. Sufficient conditions guaranteeing the asymptotic stability of the zero solution for any admissible switching law are obtained.
Keywords
дифференциально-алгебраическая система абсолютная устойчивость позитивная система функционал Ляпунова–Красовского переключения
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Niculescu, S.-I. Delay Effects on Stability. A Robust Control Approach / S.-I. Niculescu. — Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milano ; Paris ; Singapur ; Tokyo : Springer, 2001. — 388 p.
  2. 2. Fridman, E. Introduction to Time-Delay Systems: Analysis and Control / E. Fridman. — Basel : Birkh¨auser, 2014. — 362 p.
  3. 3. Pepe, P. A new Lyapunov–Krasovskii methodology for coupled delay differential and difference equations / P. Pepe, Z.-P. Jiang, E. Fridman // Int. J. Control. — 2007. — V. 81, № 1. — P. 107–115.
  4. 4. Rasvan, V. Oscillations in lossless propagation models: a Liapunov–Krasovskii approach / V. Rasvan, S.-I. Niculescu // IMA J. Math. Control Inform. — 2002. — V. 19. — P. 157–172.
  5. 5. Gu, K. Lyapunov–Krasovskii functional for uniform stability of coupled differential-functional equations / K. Gu, Y. Liu // Automatica. — 2009. — V. 45. — P. 798–804.
  6. 6. Метельский, А.В. Синтез регуляторов успокоения решения вполне регулярных дифференциально-алгебраических систем с запаздыванием / А.В. Метельский, В.Е. Хартовский // Дифференц. уравнения. — 2017. — Т. 53, № 4. — С. 547–558.
  7. 7. Щеглова, А.А. Робастная устойчивость дифференциально-алгебраических уравнений произвольного индекса неразрешенности / А.А. Щеглова, А.Д. Кононов // Автоматика и телемеханика. — 2017. — № 5. — С. 36–55.
  8. 8. Щеглова, А.А. К вопросу о сверхустойчивости интервального семейства дифференциальноалгебраических уравнений / А.А. Щеглова // Автоматика и телемеханика. — 2021. — № 2. — С. 55–70.
  9. 9. Pepe, P. On the stability of coupled delay differential and continuous time difference equations / P. Pepe, E.I. Verriest // IEEE Trans. on Automatic Control. — 2003. — V. 48, № 8. — P. 1422–1427.
  10. 10. Ngoc, P.H.A. Stability of coupled functional differential-difference equations / P.H.A. Ngoc // Int. J. Control. — 2020. — V. 93, № 8. — P. 1920–1930.
  11. 11. Shen, J. Positivity and stability of coupled differential-difference equations with time-varying delays / J. Shen, W.X. Zheng // Automatica. — 2015. — V. 57. — P. 123–127.
  12. 12. Briat, C. Stability and performance analysis of linear positive systems with delays using input–output methods / C. Briat // Int. J. Control. — 2017. — V. 91, № 7. — P. 1669–1692.
  13. 13. Aleksandrov, A.Y. Absolute stability and Lyapunov–Krasovskii functionals for switched nonlinear systems with time-delay / A.Y. Aleksandrov, O. Mason // J. Franklin Institute. — 2014. — V. 351, № 8. — P. 4381–4394.
  14. 14. Kazkurewicz, E. Matrix Diagonal Stability in Systems and Computation / E. Kazkurewicz, A. Bhaya. — Boston : Birkh¨auser, 1999. — 267 p.
  15. 15. Mason, O. Diagonal Riccati stability and positive time-delay systems / O. Mason // Systems and Control Letters. — 2012. — V. 61. — P. 6–10.
  16. 16. Aleksandrov A. Diagonal Riccati stability and applications / A. Aleksandrov, O. Mason // Linear Algebra and its Appl. — 2016. — V. 492. — P. 38–51.
  17. 17. Александров, А.Ю. О диагональной устойчивости позитивных систем с переключениями и запаздыванием / А.Ю. Александров, О. Мейсон // Автоматика и телемеханика. — 2018. — № 12. — С. 16–33.
  18. 18. Liberzon, D. Basic problems in stability and design of switched systems / D. Liberzon, A.S. Morse // IEEE Control Systems Magazine. — 1999. — V. 19, № 5. — P. 59–70.
  19. 19. Pastravanu, O.C. Max-type copositive Lyapunov functions for switching positive linear systems / O.C. Pastravanu, M.-H. Matcovschi // Automatica. — 2014. — V. 50. — P. 3323–3327.
  20. 20. Aleksandrov, A.Y. On the existence of a common Lyapunov function for a family of nonlinear positive systems / A.Y. Aleksandrov // Systems and Control Letters. — 2021. — V. 147. — Art. 1048324.
  21. 21. Aleksandrov, A.Y. On the existence of diagonal Lyapunov–Krasovskii functionals for a class of nonlinear positive time-delay systems / A.Y. Aleksandrov // Automatica. — 2024. — V. 160. — Art. 111449.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library