RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

OPTIMIZATION INVERSE SPECTRAL PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER OPERATOR ON THE ENTIRE AXIS

PII
10.31857/S0374064124040043-1
DOI
10.31857/S0374064124040043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 4
Pages
492-499
Abstract
We investigate the statement of the optimization inverse spectral problem with incomplete spectral data for the one-dimensional Schr¨odinger operator on the entire axis: for a given potential q0, find the closest function such that the first m eigenvalues of the Schrodinger operator with potential coincided with the given values .
Keywords
обратная спектральная задача система нелинейных уравнений Шрёдингера оператор Шрёдингера
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Юрко, В.А. Обратные спектральные задачи и их приложения / В.А. Юрко. — Саратов : Изд-во Саратов. пед. ин-та, 2001. — 499 p.
  2. 2. Chu, M. Inverse Eigenvalue Problems: Theory, Algorithms, and Applications / M. Chu, G.H. Golub. — Oxford : Oxford University Press, 2005. — 387 p.
  3. 3. Ilyasov, Y.Sh. On nonlinear boundary value problem corresponding to ???? -dimensional inverse spectral problem / Y.Sh. Ilyasov, N.F. Valeev // J. Differ. Equat. — 2019. — V. 266, № 8. — P. 4533–4543.
  4. 4. Ilyasov, Ya. Recovery of the nearest potential field from the ???? observed eigenvalues / Ya. Ilyasov, N. Valeev // Physica D: Nonlinear Phenomena. — 2021. — V. 426, № 5. — Art. 132985.
  5. 5. Tian, Y. On the polynomial integrability of the critical systems for optimal eigenvalue gaps / Y. Tian, Q. Wei, and M. Zhang // J. Math. Phys. — 2023. — V. 64. — Art. 092701.
  6. 6. Zhao, M. Optimal inverse problems of potentials for two given eigenvalues of Sturm–Liouville problems / M. Zhao, J. Qi // Proc. of the Royal Society of Edinburgh: Section A Mathematics. Published online. — 2024. — 24 p.
  7. 7. Wei, Q. Extremal values of eigenvalues of Sturm–Liouville operators with potentials in ????1 balls / Q. Wei, G. Meng, M. Zhang // J. Differ. Equat. — 2009. — V. 247, № 2. — P. 364–400.
  8. 8. Садовничий, В.А. Оптимизационная спектральная задача для оператора Штурма–Лиувилля в пространстве вектор-функций / В.А. Садовничий, Я.Т. Султанаев, Н.Ф. Валеев // Докл. РАН. Математика, информатика, процессы управления. — 2023. — Т. 513. — С. 93–98.
  9. 9. Садовничий, В.А. Оптимизационная обратная спектральная задача для векторного оператора Штурма–Лиувилля / В.А. Садовничий, Я.Т. Султанаев, Н.Ф. Валеев // Дифференц. уравнения. — 2022. — T. 58, № 12. — С. 1707–1711.
  10. 10. Yurko, V.A., Inverse Spectral Problems and their Applications, Saratov: PI Press, 2001.
  11. 11. Chu, M. and Golub, G.H., Inverse Eigenvalue Problems: Theory, Algorithms, and Applications, Oxford: Oxford University Press, 2005.
  12. 12. Ilyasov, Y.Sh. and Valeev, N.F., On nonlinear boundary value problem corresponding to ???? -dimensional inverse spectral problem, J. Differ. Equat., 2019, vol. 266, no. 8, pp. 4533–4543.
  13. 13. Ilyasov, Ya. and Valeev, N., Recovery of the nearest potential field from the ???? observed eigenvalues, Physica D: Nonlinear Phenomena, 2021, vol. 426, no. 5, Art. 132985.
  14. 14. Tian, Y., Wei, Q., and Zhang, M., On the polynomial integrability of the critical systems for optimal eigenvalue gaps, J. Math. Phys., 2023, vol. 64, Art. 092701.
  15. 15. Zhao, M. and Qi, J., Optimal inverse problems of potentials for two given eigenvalues of Sturm–Liouville problems, Proc. of the Royal Society of Edinburgh: Section A Mathematics, Published online, 2024, pp. 1–24.
  16. 16. Wei, Q., Meng, G., and Zhang, M., Extremal values of eigenvalues of Sturm–Liouville operators with potentials in ????1 balls, J. Differ. Equat., 2009, vol. 247, no. 2, pp. 364–400.
  17. 17. Sadovnichii, V.A., Sultanaev, Y.T., and Valeev, N.F., Optimization spectral problem for the Sturm–Liouville operator in a vector function space, Dokl. Math., 2023, vol. 108, pp. 406–410.
  18. 18. Sadovnichii, V.A., Sultanaev, Y.T., and Valeev, N.F. Optimization inverse spectral problem for a vector Sturm– Liouville operator, Differ. Equat., 2022, vol. 58, pp. 1694–1699.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library