ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

ФОРМУЛА КРИСТОФФЕЛЯ–ДАРБУ ДЛЯ ПОЛИНОМИАЛЬНЫХ СОБСТВЕННЫХ ФУНКЦИЙ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА

Код статьи
10.31857/S0374064124040025-1
DOI
10.31857/S0374064124040025
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 60 / Номер выпуска 4
Страницы
463-471
Аннотация
С помощью рекуррентных соотношений между любыми тремя последовательными полиномиальными собственными функциями линейных дифференциальных уравнений получена формула Кристоффеля–Дарбу для системы полиномиальных собственных функций этих уравнений
Ключевые слова
полиномиальные собственные функции формула Кристоффеля–Дарбу
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
7

Библиография

  1. 1. Круглов, В.Е. Построение полиномиальных собственных функций линейного дифференциального уравнения второго порядка / В.Е. Круглов // Дифференц. уравнения. — 2023. — Т. 59, № 9. — С. 1172–1180.
  2. 2. Никифоров, А.Ф. Специальные функции математической физики : учеб. пособие для вузов / А.Ф. Никифоров, В.Е. Уваров. — 2-е изд., перераб. и доп. — М. : Наука, 1984. — 344 с.
  3. 3. Суетин, П.К. Классические ортогональные многочлены / П.К. Суетин. — М. : Наука, 1976. — 327 с.
  4. 4. Kruglov, V.E., Construction of polynomial eigenfunctions of a second-order linear differential equation, Differ. Equat., 2023, vol. 59, no. 9, pp. 1166–1174.
  5. 5. Nikiforov, A.F. and Uvarov, V.E., Spetsial’nye funktsii matematicheskoi fiziki (Special Functions of Mathematical Physics), Moscow: Nauka, 1984.
  6. 6. Suetin, P.K., Klassicheskie ortogonal’nye mnogochleny (Classical Orthogonal Polynomials), Moscow: Nauka, 1976.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека