RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Gradient in the problem of controlling processes described by linear pseudohyperbolic equations

PII
10.31857/S0374064124020068-1
DOI
10.31857/S0374064124020068
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 2
Pages
224-236
Abstract
The paper considers the problem of controlling processes, the mathematical model of which is an initial-boundary value problem for a pseudohyperbolic linear differential equation of high order in the spatial variable and second order in the time variable. The pseudohyperbolic equation is a generalization of the ordinary hyperbolic equation, which is typical in vibration theory. As examples, models of vibrations of moving elastic materials were considered. For model problems, an energy identity is established, and conditions for the uniqueness of a solution are formulated. As an optimization problem, we considered the problem of controlling the right side in order to minimize the quadratic integral functional, which evaluates the proximity of the solution to the objective function. From the original functional a transition was made to the majorant functional, for which the corresponding upper bound was established. An explicit expression for the gradient of this functional is obtained, and conjugate initial-boundary value problems are derived.
Keywords
псевдогиперболическое уравнение градиент оптимальное управление
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Hyperbolic models arising in the theory of longitudinal vibration of elastic bars / I. Fedotov, J. Marais, M. Shatalovand, H.M. Tenkam // The Australian J. of Math. Anal. and Appl. — 2011. — V. 7, № 2. — P. 1–18.
  2. 2. Abdulazeez, S.T. Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method / S.T. Abdulazeez, M. Modanli // Alexandria Engineering J. — 2022. — V. 61, № 12. — P. 12443–12451.
  3. 3. Abdulazeez, S.T. Numerical scheme methods for solving nonlinear pseudo-hyperbolic partial differential equations / S.T. Abdulazeez, M. Modanli, A.M. Husien // J. of Appl. Math. and Comput. Mech. — 2022. — V. 4, № 21. — P. 5–15.
  4. 4. Zhao, Z. A continuous Galerkin method for pseudo-hyperbolic equations with variable coefficients / Z. Zhao, H. Li // J. of Math. Anal. and Appl. — 2019. — V. 473, № 2. — P. 1053–1072.
  5. 5. Эванс, Л.К. Уравнения с частными производными / Л.К. Эванс ; пер. с англ. — Новосибирск: Тамара Рожковская, 2003. — 560 с.
  6. 6. Васильев, Ф.П. Методы оптимизации : учебное пособие / Ф.П. Васильев. — М. : МЦНМО, 2011. — 434 с.
  7. 7. Рудаков, И.А. Задача о колебаниях двутавровой балки с закрепленным и шарнирно опертым концами / И.А. Рудаков // Вестн. МГТУ имени Н.Э. Баумана. Сер. Естеств. науки. — 2019. — № 3. — С. 4–21.
  8. 8. Керефов, М.А. Численно-аналитический метод решения краевой задачи для обобщённых уравнений влагопереноса / М.А. Керефов, С.Х. Геккиева // Вестн. Удмуртского ун-та. Матем. Мех. Компьют. науки. — 2021. — Т. 31, № 1. — С. 19–34.
  9. 9. Mechanics of Moving Materials / Banichuk N., Jeronen J., Neittaanäki P. [et al.]. — Springer, 2014.
  10. 10. Самарский, А.А. Вычислительная теплопередача / А.А. Самарский, П.Н. Вабищевич. — М.: URSS, 2020. — 784 с.
  11. 11. Hong, K.-S. Control of axially moving systems / K.-S. Hong, P.-T. Pham // A Review. Int. J. Control Autom. Syst. — 2019. — V. 17. — P. 2983–3008.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library