- PII
- 10.31857/S0374064123110134-1
- DOI
- 10.31857/S0374064123110134
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 11
- Pages
- 1571-1574
- Abstract
- We study the stability of a modified (with variation in the nonlinearity parameter) “super-twisting” algorithm. The analysis is based on majorizing the trajectories of the system with an arbitrary nonlinearity parameter by the trajectories of systems of the classical “super-twisting” algorithm. Stability conditions for the modified systems are obtained, as well as estimates for the size of the stability domain depending on system parameters
- Keywords
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 7
References
- 1. Емельянов С.В., Коровин С.К., Левантовский Л.В. Новый класс алгоритмов скольжения второго порядка // Мат. моделирование. 1990. Т. 2. № 3. С. 89-100.
- 2. Levant A. Sliding order and sliding accuracy in sliding mode control // Int. J. of Control. 1993. V. 58. P. 1247-1263.
- 3. Moreno J., Osorio M. Strict Lyapounov functions for the super-twisting algorithm // IEEE Trans. on Autom. Contr. 2012. V. 57. P. 1035-1040.
- 4. Seeber R., Horn M. Stability proof for a well-established super-twisting parameter setting // Automatica. 2017. V. 84. P. 241-243.
- 5. Seeber R., Horn M. Necessary and sufficient stability criterion for the super-twisting algorithm // 15th Intern. Workshop on Variable Structure Systems (VSS). 2018. P. 120-125.
- 6. Фомичев В.В., Высоцкий А.О. Критерий устойчивости и точные оценки для алгоритма "супер-скручивания"// Дифференц. уравнения. 2023. Т. 59. № 2. С. 252-256.