ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Бифуркация Хопфа в системе хищник-жертва с инфекцией

Код статьи
10.31857/S0374064123110122-1
DOI
10.31857/S0374064123110122
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 11
Страницы
1566-1570
Аннотация
Исследуется модель системы хищник-жертва с возможной инфекцией жертв в виде трёхмерной системы обыкновенных дифференциальных уравнений. С помощью метода локализации инвариантных компактов доказывается существование аттрактора и находится компактное положительно инвариантное множество, оценивающее его положение. Находятся условия вымирания популяций и существования положений равновесия. Предлагается численный метод нахождения бифуркации Хопфа пространственного положения равновесия и приводится пример возникающего устойчивого предельного цикла.
Ключевые слова
Дата публикации
19.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
5

Библиография

  1. 1. Bate A.M., Hilkerr F.M. Complex dynamics in an eco-epidemiological model // Bull. Math. Biol. 2013. V. 75. P. 2059-2078.
  2. 2. Крищенко А.П. Локализация инвариантных компактов динамических систем // Дифференц. уравнения. 2005. Т. 41. № 12. С. 1597-1604.
  3. 3. Арнольд В.И. Обыкновенные дифференциальные уравнения. М., 2012.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека