RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Behavior of Trajectories of a Four-Dimensional Model of HIV Infection

PII
10.31857/S037406412311002X-1
DOI
10.31857/S037406412311002X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 11
Pages
1451-1461
Abstract
A model of interaction between the human immunodeficiency virus and the human immune system is considered. Equilibria in the state space of the system and their stability are analyzed, and the ultimate bounds of the trajectories are constructed. It has been proved that the local asymptotic stability of the equilibrium corresponding to the absence of disease is equivalent to its global asymptotic stability. The loss of stability is shown to be caused by a transcritical bifurcation.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Kirschner D., Lenhart S., Serbin S. Dynamics of HIV infection of CD4+T cells // Math. Biosci. 1993. V. 114. P. 81-125.
  2. 2. Perelson A.S., Nelson P.W. Mathematical analysis of HIV-1 dynamics in vivo // SIAM Rev. 1999. V. 41. P. 3-44.
  3. 3. Elaiw A.M. Global properties of a class of HIV models // Nonlin. Anal. Real World Appl. 2010. V. 11. P. 2253-2263.
  4. 4. Hadjiandreou M., Conejeros R., Vassiliadis V.S. Towards a long-term model construction for the dynamic simulation of HIV infection // Math. Biosci. Eng. 2007. V. 4. P. 489-504.
  5. 5. De Leenheer P., Smith H.L. Virus dynamics: a global analysis // SIAM J. Appl. Math. 2003. V. 63. P. 1313-1327.
  6. 6. Nowak M., May R.M. Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford, 2000.
  7. 7. Dehghan M., Nasri M., Razvan M.R. Global stability of a deterministic model for HIV infection in vivo // Chaos, Solitons and Fractals. 2007. V. 34. P. 1225-1238.
  8. 8. Kirschner D., Lenhart S., Serbin S. Optimal control of the chemotherapy of HIV // J. Math. Biol. 1997. V. 35. P. 775-792.
  9. 9. Малинецкий Г.Г. Математические основы синергетики. М., 2017.
  10. 10. Крищенко А.П. Локализация инвариантных компактов динамических систем // Дифференц. уравнения. 2005. V. 41. № 12. С. 1597-1604.
  11. 11. Канатников А.Н., Крищенко А.П. Инвариантные компакты динамических систем. М., 2011.
  12. 12. Крищенко А.П. Поведение траекторий автономных систем // Дифференц. уравнения. 2018. Т. 54. № 11. С. 1445-1450.
  13. 13. Халил Х.К. Нелинейные системы. М.; Ижевск, 2009.
  14. 14. Starkov K.E., Kanatnikov A.N. Eradication conditions of infected cell populations in the 7-order HIV model with viral mutations and related results // Math. 2021. V. 9. Art. 1862.
  15. 15. Kanatnikov A.N., Krishchenko A.P. Iteration procedure of localization in a chronic Leukemia model // AIP Conf. Proc. 2020. Art. 210004-1.
  16. 16. Четаев Н.Г. Устойчивость движения. М., 1965.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library