RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Gellerstedt Problem with a Nonlocal Oddness Boundary Condition for the Lavrent’ev–Bitsadze Equation

PII
10.31857/S0374064123100059-1
DOI
10.31857/S0374064123100059
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 10
Pages
1373-1384
Abstract
We study the Gellerstedt problem for the Lavrent’ev–Bitsadze equation with the oddness boundary condition on the boundary of the ellipticity domain. All eigenvalues and eigenfunctions are obtained in closed form. It is proved that the system of eigenfunctions is complete in the elliptic part of the domain and incomplete in the entire domain. The unique solvability of the problem is also proved; the solution is written in the form of a series if the spectral parameter is not equal to an eigenvalue. For the spectral parameter coinciding with an eigenvalue, solvability conditions are obtained under which the family of solutions is found in the form of a series. A condition for the solvability of the problem depending on the eigenvalues is obtained. The constructed analytical solutions can be used efficiently in numerical modeling of transonic gas dynamics problems.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Пономарев С.М. Спектральная теория основной краевой задачи для уравнения Лаврентьева-Бицадзе: дис.... д-ра физ.-мат. наук. М., 1981.
  2. 2. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М., 1966.
  3. 3. Ватсон Г.Н. Теория бесселевых функций. Т. 1. М., 1949.
  4. 4. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 2. М., 1965.
  5. 5. Моисеев Е.И. О дифференциальных свойствах разложений по системе синусов и косинусов // Дифференц. уравнения. 1996. Т. 32. № 1. C. 117-126.
  6. 6. Моисеев Е.И. О базисности систем синусов и косинусов // Докл. АН СССР. 1984. Т. 275. № 4. C. 794-798.
  7. 7. Зигмунд А. Тригонометрические ряды. Т. 1. М., 1985.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library