RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Partial Stability of Systems of Itô Linear Delay Differential Equations

PII
10.31857/S0374064123100023-1
DOI
10.31857/S0374064123100023
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 10
Pages
1318-1334
Abstract
We study the moment stability of solutions in part of the variables with respect to the initial data for systems of Itô linear delay differential equations using a modified regularization method based on the choice of an auxiliary equation and an application of the theory of nonnegatively invertible matrices. For these systems, sufficient stability conditions are obtained in terms of nonnegative invertibility of matrices constructed from the parameters of these systems. The satisfiability of these conditions is verified for specific classes of systems of Itô linear equations with delay.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Колмановский В.Б., Носов В.Р. Устойчивость и периодические режимы регулируемых систем с последействием. М., 1981.
  2. 2. Царьков Е.Ф. Случайные возмущения дифференциально-функциональных уравнений. Рига, 1989.
  3. 3. Mao X. Stochastic Differential Equations and Applications. Chichester, 1997.
  4. 4. Mohammed S.-E.F. Stochastic functional differential equations with memory. Theory, examples and applications // Proc. of the Sixth on Stochastic Analysis. Geilo, 1996. P. 1-91.
  5. 5. Azbelev N.V., Simonov P.M. Stability of Differential Equations with Aftereffect. London, 2002.
  6. 6. Воротников В.И., Румянцев В.В. Устойчивость и управление по части координат фазового вектора динамических систем: теория, методы и приложения. М., 2001.
  7. 7. Кадиев Р.И. Достаточные условия устойчивости по части переменных линейных стохастических систем с последействием // Изв. вузов. Математика. 2000. № 6. С. 75-79.
  8. 8. Кадиев Р.И. Допустимость пар пространств по части переменных для линейных стохастических функционально-дифференциальных уравнений // Изв. вузов. Математика. 1994. № 4. С. 1-9.
  9. 9. Kadiev R.I., Ponosov A.V. Partial Lyapunov stability of linear stochastic functional differential equations with to initial values // Int. J. of Dynamics of Continuous, Discrete and Impulsive Systems. Ser. A: Math. Anal. 2008. V. 15. № 5. P. 727-754.
  10. 10. Kadiev R., Ponosov A. Partial stability of stochastic functional differential equations and the $W $-trans\-form // Int. J. of Dynamics of Continuous, Discrete and Impulsive Systems. Ser. A: Math. Anal. 2014. V. 21. № 1. P. 1-35.
  11. 11. Воротников В.И., Мартышенко Ю.Г. К задаче частичной устойчивости по вероятности нелинейных стохастических систем // Автоматика и телемеханика. 2019. № 5. С. 86-98.
  12. 12. Воротников В.И., Мартышенко Ю.Г. К задаче частичной устойчивости нелинейных дискретных стохастических систем // Автоматика и телемеханика. 2021. № 9. С. 116-132.
  13. 13. Кадиев Р.И., Поносов А.В. Положительная обратимость матриц и устойчивость дифференциальных уравнений Ито с запаздываниями // Дифференц. уравнения. 2013. Т. 53. № 5. С. 579-590.
  14. 14. Кадиев Р.И., Поносов А.В. Положительная обратимость матриц и экспоненциальная устойчивость импульсных систем линейных дифференциальных уравнений Ито с ограниченными запаздываниями // Изв. вузов. Математика. 2020. № 10. С. 3-8.
  15. 15. Кадиев Р.И. Существование и единственность решения задачи Коши для функционально-дифференциальных уравнений по семимартингалу // Изв. вузов. Математика. 1995. № 10. С. 35-40.
  16. 16. Кадиев Р.И. Исследование вопросов устойчивости для линейных стохастических функционально-дифференциальных уравнений методом вспомогательных уравнений // Дагестанские электрон. мат. изв. 2014. Вып. 2. С. 45-67.
  17. 17. Беллман Р. Введение в теорию матриц. М., 1969.
  18. 18. Kadiev R., Ponosov A. The $W $-transform in stability analysis for stochastic linear functional difference equations // J. Math. Analysis and Appl. 2012. V. 389. № 2. P. 1239-1250.
  19. 19. Липцер Р.Ш., Ширяев А.Н. Теория мартингалов. М., 1986.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library