ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Устойчивость по части переменных систем линейных дифференциальных уравнений Ито с последействием

Код статьи
10.31857/S0374064123100023-1
DOI
10.31857/S0374064123100023
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 10
Страницы
1318-1334
Аннотация
Исследованы вопросы моментной устойчивости решений по части переменных относительно начальных данных для систем линейных дифференциальных уравнений Ито с последействием модифицированным методом регуляризации, основанным на выборе вспомогательного уравнения и применении теории неотрицательно обратимых матриц. Для упомянутых систем получены достаточные условия устойчивости в терминах неотрицательной обратимости матриц, построенных по параметрам этих систем. Проверена выполнимость этих условий для конкретных классов систем линейных уравнений Ито с последействием.
Ключевые слова
Дата публикации
19.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
5

Библиография

  1. 1. Колмановский В.Б., Носов В.Р. Устойчивость и периодические режимы регулируемых систем с последействием. М., 1981.
  2. 2. Царьков Е.Ф. Случайные возмущения дифференциально-функциональных уравнений. Рига, 1989.
  3. 3. Mao X. Stochastic Differential Equations and Applications. Chichester, 1997.
  4. 4. Mohammed S.-E.F. Stochastic functional differential equations with memory. Theory, examples and applications // Proc. of the Sixth on Stochastic Analysis. Geilo, 1996. P. 1-91.
  5. 5. Azbelev N.V., Simonov P.M. Stability of Differential Equations with Aftereffect. London, 2002.
  6. 6. Воротников В.И., Румянцев В.В. Устойчивость и управление по части координат фазового вектора динамических систем: теория, методы и приложения. М., 2001.
  7. 7. Кадиев Р.И. Достаточные условия устойчивости по части переменных линейных стохастических систем с последействием // Изв. вузов. Математика. 2000. № 6. С. 75-79.
  8. 8. Кадиев Р.И. Допустимость пар пространств по части переменных для линейных стохастических функционально-дифференциальных уравнений // Изв. вузов. Математика. 1994. № 4. С. 1-9.
  9. 9. Kadiev R.I., Ponosov A.V. Partial Lyapunov stability of linear stochastic functional differential equations with to initial values // Int. J. of Dynamics of Continuous, Discrete and Impulsive Systems. Ser. A: Math. Anal. 2008. V. 15. № 5. P. 727-754.
  10. 10. Kadiev R., Ponosov A. Partial stability of stochastic functional differential equations and the $W $-trans\-form // Int. J. of Dynamics of Continuous, Discrete and Impulsive Systems. Ser. A: Math. Anal. 2014. V. 21. № 1. P. 1-35.
  11. 11. Воротников В.И., Мартышенко Ю.Г. К задаче частичной устойчивости по вероятности нелинейных стохастических систем // Автоматика и телемеханика. 2019. № 5. С. 86-98.
  12. 12. Воротников В.И., Мартышенко Ю.Г. К задаче частичной устойчивости нелинейных дискретных стохастических систем // Автоматика и телемеханика. 2021. № 9. С. 116-132.
  13. 13. Кадиев Р.И., Поносов А.В. Положительная обратимость матриц и устойчивость дифференциальных уравнений Ито с запаздываниями // Дифференц. уравнения. 2013. Т. 53. № 5. С. 579-590.
  14. 14. Кадиев Р.И., Поносов А.В. Положительная обратимость матриц и экспоненциальная устойчивость импульсных систем линейных дифференциальных уравнений Ито с ограниченными запаздываниями // Изв. вузов. Математика. 2020. № 10. С. 3-8.
  15. 15. Кадиев Р.И. Существование и единственность решения задачи Коши для функционально-дифференциальных уравнений по семимартингалу // Изв. вузов. Математика. 1995. № 10. С. 35-40.
  16. 16. Кадиев Р.И. Исследование вопросов устойчивости для линейных стохастических функционально-дифференциальных уравнений методом вспомогательных уравнений // Дагестанские электрон. мат. изв. 2014. Вып. 2. С. 45-67.
  17. 17. Беллман Р. Введение в теорию матриц. М., 1969.
  18. 18. Kadiev R., Ponosov A. The $W $-transform in stability analysis for stochastic linear functional difference equations // J. Math. Analysis and Appl. 2012. V. 389. № 2. P. 1239-1250.
  19. 19. Липцер Р.Ш., Ширяев А.Н. Теория мартингалов. М., 1986.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека