RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Neanaliticheskie pervye integraly analiticheskikh sistem differentsial'nykh uravneniy v okrestnosti ustoychivykh polozheniy ravnovesiya

PII
10.31857/S0374064123060134-1
DOI
10.31857/S0374064123060134
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 6
Pages
843-846
Abstract
In even-dimensional phase spaces, we give examples of analytic systems of differential equations that have isolated equilibria and admit nonanalytic first integrals. These integrals are positive definite in a neighborhood of the equilibria, which proves the stability of the equilibria (on the entire time axis). However, such systems of differential equations do not admit nontrivial first integrals in the form of formal power series at all. In particular, the Lyapunov stability of equilibria of analytic systems does not imply their formal stability. In the case of an odd-dimensional phase space, all isolated equilibria are apparently unstable.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Ляпунов А.М. Общая задача об устойчивости движения. М.; Л., 1950.
  2. 2. Зигель К., Мозер Ю. Лекции по небесной механике. М.; Ижевск, 2001.
  3. 3. Немыцкий В.В., Степанов В.В. Качественная теория дифференциальных уравнений. М.; Л., 1949.
  4. 4. Brunella M. Instability of equilibria in dimension three // Ann. Inst. Fourier (Grenoble). 1998. V. 48. № 5. P. 1345-1357.
  5. 5. Козлов В.В., Трещёв Д.В. О неустойчивости изолированных равновесий динамических систем с инвариантной мерой в нечётномерном пространстве // Мат. заметки. 1999. Т. 65. Вып. 5. С. 674-680.
  6. 6. Козлов В.В. Первые интегралы и асимптотические траектории // Мат. сб. 2020. Т. 211. № 1. С. 32-59.
  7. 7. Маркеев А.П. Точки либрации в небесной механике и космодинамике. М., 1978.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library