RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Ob approksimatsii poverkhnostnykh proizvodnykh funktsiy s primeneniem integral'nykh operatorov

PII
10.31857/S0374064123060122-1
DOI
10.31857/S0374064123060122
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 6
Pages
828-842
Abstract
Integral formulas are presented for approximating the surface gradient (of a scalar function given on a surface) and divergence (of a tangent vector field given on a surface) that are analogs of the well-known formulas for the derivatives of a function on a plane. Estimates of the error in the approximation of these functions are obtained. The question of subsequent approximation of the integrals that give expression for the surface gradient and divergence by quadrature sums over the values of the function under study at the nodes selected on the cells of the unstructured grid approximating the surface is also considered.
Keywords
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М., 1987.
  2. 2. Лифанов И.К. Метод сингулярных интегральных уравнений и численный эксперимент. М., 1995.
  3. 3. Volakis J.L., Sertel K. Integral Equation Methods for Electromagnetics. Raleigh, 2012.
  4. 4. Писарев И.В., Сетуха А.В. Снесение граничного условия на срединную поверхность при численном решении краевой задачи линейной теории крыла // Вычислит. методы и программирование. 2014. Т. 15. Вып. 1. С. 109-120.
  5. 5. Setukha A., Fetisov S. The method of relocation of boundary condition for the problem of electromagnetic wave scattering by perfectly conducting thin objects // J. of Comput. Phys. 2018. V. 373. P. 631-647.
  6. 6. Гутников В.А., Лифанов И.К., Сетуха А.В. О моделировании зданий и сооружений методом дискретных вихревых рамок // Изв. РАН. Механика жидкости и газа. 2006. № 4. C. 78-92.
  7. 7. Eldredge J.D., Leonard A., Colonius T. A general deterministic treatment of derivatives in particle methods // J. of Comput. Phys. 2002. V. 180. P. 686-709.
  8. 8. Зорич В.А. Математический анализ. Ч. 1. М., 1997.
  9. 9. Захаров Е.В., Рыжаков Г.В., Сетуха А.В. Численное решение трёхмерных задач дифракции электромагнитных волн на системе идеальнопроводящих поверхностей методом гиперсингулярных интегральных уравнений // Дифференц. уравнения. 2014. Т. 50. № 9. С. 1253-1263.
  10. 10. Рыжаков Г.В., Сетуха А.В. О сходимости численной схемы типа метода вихревых рамок на замкнутой поверхности с аппроксимацией формы поверхности // Дифференц. уравнения. 2012. Т. 48. № 9. С. 1327-1336.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library