ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Об аппроксимации поверхностных производных функций с применением интегральных операторов

Код статьи
10.31857/S0374064123060122-1
DOI
10.31857/S0374064123060122
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 59 / Номер выпуска 6
Страницы
828-842
Аннотация
Представлены интегральные формулы для аппроксимации поверхностных градиента (от скалярной функции, заданной на поверхности) и дивергенции (от касательного векторного поля, заданного на поверхности), являющиеся аналогами известных формул для производных функции на плоскости. Получены оценки погрешности аппроксимации этих величин. Также рассмотрен вопрос о последующей аппроксимации интегралов, дающих выражение для поверхностных градиента и дивергенции, квадратурными суммами по значениям исследуемой функции в узлах, выбираемых на ячейках неструктурированной сетки, аппроксимирующей поверхность.
Ключевые слова
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
4

Библиография

  1. 1. Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М., 1987.
  2. 2. Лифанов И.К. Метод сингулярных интегральных уравнений и численный эксперимент. М., 1995.
  3. 3. Volakis J.L., Sertel K. Integral Equation Methods for Electromagnetics. Raleigh, 2012.
  4. 4. Писарев И.В., Сетуха А.В. Снесение граничного условия на срединную поверхность при численном решении краевой задачи линейной теории крыла // Вычислит. методы и программирование. 2014. Т. 15. Вып. 1. С. 109-120.
  5. 5. Setukha A., Fetisov S. The method of relocation of boundary condition for the problem of electromagnetic wave scattering by perfectly conducting thin objects // J. of Comput. Phys. 2018. V. 373. P. 631-647.
  6. 6. Гутников В.А., Лифанов И.К., Сетуха А.В. О моделировании зданий и сооружений методом дискретных вихревых рамок // Изв. РАН. Механика жидкости и газа. 2006. № 4. C. 78-92.
  7. 7. Eldredge J.D., Leonard A., Colonius T. A general deterministic treatment of derivatives in particle methods // J. of Comput. Phys. 2002. V. 180. P. 686-709.
  8. 8. Зорич В.А. Математический анализ. Ч. 1. М., 1997.
  9. 9. Захаров Е.В., Рыжаков Г.В., Сетуха А.В. Численное решение трёхмерных задач дифракции электромагнитных волн на системе идеальнопроводящих поверхностей методом гиперсингулярных интегральных уравнений // Дифференц. уравнения. 2014. Т. 50. № 9. С. 1253-1263.
  10. 10. Рыжаков Г.В., Сетуха А.В. О сходимости численной схемы типа метода вихревых рамок на замкнутой поверхности с аппроксимацией формы поверхности // Дифференц. уравнения. 2012. Т. 48. № 9. С. 1327-1336.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека