- PII
- 10.31857/S0374064123040076-1
- DOI
- 10.31857/S0374064123040076
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 4
- Pages
- 501-511
- Abstract
- We consider an initial–boundary value problem for an integro-differential system that describes 3D flows of a non-Newtonian fluid with memory in a network-like domain. The problem statement uses the Dirichlet boundary conditions for the velocity and pressure fields as well as Kirchhoff-type transmission conditions at the internal nodes of the network. A theorem on the existence and uniqueness of a time-continuous weak solution is proved. In addition, an energy equality for this solution is derived.
- Keywords
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 9
References
- 1. Panasenko G., Pileckas K. Flows in a tube structure: equation on the graph // J. of Math. Phys. 2014. V. 55. Art. ID 081505.
- 2. Provotorov V.V., Provotorova E.N. Optimal control of the linearized Navier-Stokes system in a netlike domain // Вестн. Санкт-Петербургского ун-та. Прикл. математика. Информатика. Процессы управления. 2017. Т. 13. № 4. C. 431-443.
- 3. Baranovskii E.S., Provotorov V.V., Artemov M.A., Zhabko A.P. Non-isothermal creeping flows in a pipeline network: existence results // Symmetry. 2021. V. 13. № 7. Art. ID 1300.
- 4. Astarita G., Marucci G. Principles of Non-Newtonian Fluid Mechanics. New York, 1974.
- 5. Cioranescu D., Girault V., Rajagopal K.R. Mechanics and Mathematics of Fluids of the Differential Type. Cham, 2016.
- 6. Брутян М.А., Крапивский П.Л. Гидродинамика неньютоновских жидкостей // Итоги науки и техники. Сер. Комплексные и специальные разделы механики. 1991. Т. 4. С. 3-98.
- 7. Saut J.-C. Lectures on the mathematical theory of viscoelastic fluids // Lect. on the Analysis of Nonlinear Partial Differential Equations. Part 3. Somerville, 2013. P. 325-393.
- 8. Baranovskii E.S. A novel 3D model for non-Newtonian fluid flows in a pipe network // Math. Methods in the Appl. Sci. 2021. V. 44. № 5. P. 3827-3839.
- 9. Рагулин В.В. К задаче о протекании вязкой жидкости сквозь ограниченную область при заданном перепаде давления и напора // Динамика сплошной среды. 1976. Т. 27. C. 78-92.
- 10. Oskolkov A.P., Shadiev R. Towards a theory of global solvability on $[0,\\infty)$ of initial-boundary value problems for the equations of motion of Oldroyd and Kelvin-Voight fluids // J. of Math. Sci. 1994. V. 68. P. 240-253.
- 11. Oskolkov A.P. Smooth global solutions of initial boundary-value problems for the equations of Oldroyd fluids and of their $\\epsilon $-approximations // J. of Math. Sci. 1998. V. 89. P. 1750-1763.
- 12. Bir B., Goswami D. On a three step two-grid finite element method for the Oldroyd model of order one // ZAMM Zeitschrift f\\"ur Angewandte Mathematik und Mechanik. 2021. Bd. 101. № 11. Art. ID e202000373.
- 13. Beir ao da Veiga H. On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip and non-slip boundary conditions // Comm. Pure Appl. Math. 2005. V. 58. P. 552-577.
- 14. Baranovskii E.S., Artemov M.A. Global existence results for Oldroyd fluids with wall slip // Acta Applicandae Mathematicae. 2017. V. 147. № 1. P. 197-210.
- 15. Baranovskii E.S. Steady flows of an Oldroyd fluid with threshold slip // Comm. on Pure and Appl. Anal. 2019. V. 18. № 2. P. 735-750.
- 16. Galdi G.P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems. New York, 2011.
- 17. Temam R. Navier-Stokes Equations. Theory and Numerical Analysis. Amsterdam; New York; Oxford, 1977.
- 18. Ne\\v{c}as J. Direct Methods in the Theory of Elliptic Equations. Heidelberg, 2012.