RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

On Some Extremal Problems Associated with Motion in a Velocity Field

PII
10.31857/S0374064123030135-1
DOI
10.31857/S0374064123030135
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 3
Pages
422-431
Abstract
The extremals of the Pontryagin maximum principle for problems related to motion in the velocity field are studied. Controls are continuous functions. It is shown that in the state space there exists a neighborhood of the final point through each point of which there passes a single extremal trajectory leading to the final point. It is also shown that if the trajectory of an extremal contains a point that another extremal with the same value of the functional passes through, then this point cuts off the nonoptimal part from the trajectory. It is proved that the remaining part leading to the final point is optimal.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Арутюнов А.В., Магарил-Ильяев Г.Г., Тихомиров В.М. Принцип максимума Понтрягина. Доказательство и приложения. М., 2006.
  2. 2. Bin Li, Chao Xu, Kok Lay Teo, Jian Chu. Time optimal Zermelo's navigation problem with moving and fixed obstacles // Appl. Math. and Comput. 2013. V. 224. P. 866-875.
  3. 3. Chertovskih R., Karamzin D., Khalil N.T., Pereira F.L. An indirect numerical method for a time-optimal state-constrained control problem in a steady two-dimensional fluid flow // Proc. of the 2018 IEEE Oceanics Engineering Society Autonomous Underwater Vehicle Sympos. 2019. P. 1-6.
  4. 4. Chertovskih R., Karamzin D., Khalil N.T., Lobo Pereira F. Regular path-constrained time-optimal control problems in three-dimensional flow fields // Eur. J. of Control. 2020. V. 56. P. 98-106.
  5. 5. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М., 1979.
  6. 6. Зубов В.И. Теория колебаний. М., 1979.
  7. 7. Николенко П.В. О наискорейших перемещениях в поле скоростей // Дифференц. уравнения. 2011. Т. 47. № 5. С. 738-745.
  8. 8. Николенко П.В. Множество неоднозначности и задача о наискорейших перемещениях в поле скоростей // Дифференц. уравнения. 2014. Т. 50. № 3. С. 372-381.
  9. 9. Николенко П.В. О множестве разреза в некоторых экстремальных задачах, связанных с перемещением в поле скоростей // Изв. вузов. Северо-Кавказский регион. Естеств. науки. 2017. № 4. С. 37-44.
  10. 10. Болтянский В.Г. Математические методы оптимального управления. М., 1969.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library