RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

On the Bifurcation of Thresholds of the Essential Spectrum with a Spectral Singularity

PII
10.31857/S0374064123020127-1
DOI
10.31857/S0374064123020127
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
270-274
Abstract
We consider the Schrödinger operator on the plane with bounded potential, where is a real potential, and are compactly supported complex potentials, and is a small parameter, assuming that the lower part of the spectrum of the one-dimensional Schrödinger operator consists of a pair of isolated eigenvalues and the essential spectrum of the operator has a virtual level at its lower edge and a spectral singularity inside. Additionally, we assume that there is a certain superposition of eigenvalues of the operator with the virtual level and spectral singularity of the operator; this leads to the emergence of a special threshold in the essential spectrum of the perturbed operator, with the perturbation leading to a bifurcation of this threshold into eigenvalues and resonances with multiplicity doubling. The bifurcation scenario described in this paper is qualitatively different from the previously known ones.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Guseinov G.Sh. On the concept of spectral singularities // Pramana - J. Phys. 2009. V. 73. № 3. P. 587-603.
  2. 2. Borisov D.I., Zezyulin D.A., Znojil M. Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations // Stud. Appl. Math. 2021. V. 146. № 4. P. 834-880.
  3. 3. Borisov D.I., Zezyulin D.A. Bifurcations of essential spectra generated by a small non-Hermitian hole. I. Meromorphic continuations // Russ. J. Math. Phys. 2021. V. 28. № 4. P. 416-433.
  4. 4. Borisov D.I., Zezyulin D.A. Bifurcations of essential spectra generated by a small non-Hermitian small hole. II. Eigenvalues and resonances // Russ. J. Math. Phys. 2022. V. 29. № 3. P. 321-341.
  5. 5. Назаров С.А. Сохранение пороговых резонансов и отцепление собственных чисел от порога непрерывного спектра квантовых волноводов // Мат. сб. 2021. Т. 212. № 7. С. 84-121.
  6. 6. Назаров С.А. Пороговые резонансы и виртуальные уровни в спектре цилиндрических и периодических волноводов // Изв. РАН. Сер. мат. 2020. Т. 84. № 6. С. 73-130.
  7. 7. Гатауллин Т.М., Карасёв М.В. О возмущении квазиуровней оператора Шрёдингера с комплексным потенциалом // Теор. мат. физ. 1971. Т. 9. № 2. С. 252-263.
  8. 8. Лакаев С.Н., Абдухакимов С.Х. Пороговые эффекты в системе двух фермионов на оптической решётке // Теор. мат. физ. 2020. Т. 203. № 2. С. 251-268.
  9. 9. Лакаев С.Н., Улашов С.С. Существование и аналитичность связанных состояний двухчастичного оператора Шрёдингера на решётке // Теор. мат. физ. 2012. Т. 170. № 3. С. 393-408.
  10. 10. Gesztesy F., Holden H. A unified approach to eigenvalues and resonances of Schr\\"odinger operators using Fredholm determinants // J. Math. Anal. Appl. 1987. V. 123. № 1. P. 181-198.
  11. 11. Борисов Д.И. Возмущение края существенного спектра волновода с окном. I. Убывающие резонансные решения // Пробл. мат. анализа. 2014. Т. 77. С. 19-54.
  12. 12. Borisov D.I., Zezyulin D.A. Sequences of closely spaced resonances and eigenvalues for bipartite complex potentials // Appl. Math. Lett. 2020. V. 100. ID 106049.
  13. 13. Klopp F. Resonances for large one-dimensional "ergodic" systems // Analysis and PDE. 2016. V. 9. № 2. P. 259-352.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library