RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces

PII
10.31857/S0374064123010053-1
DOI
10.31857/S0374064123010053
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 1
Pages
35-50
Abstract
We consider second-order elliptic equations with nonlinearities determined by Musielak–Orlicz functions and with right-hand side in the space. In the Musielak–Orlicz–Sobolev spaces, we establish some properties and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with Lipschitz boundary. In addition, the equivalence and sign-definiteness of the entropy and renormalized solutions is proved.
Keywords
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Chlebcka I. Measure data elliptic problems with generalized Orlicz growth // Proc. of the Royal Soc. of Edinburgh Sec. A: Math., First View. 2022. P. 1-31.
  2. 2. Gwiazda P., Skrzypczaka I., Zatorska-Goldstein A. Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space // J. of Differ. Equat. 2017. V. 264. P. 341-377.
  3. 3. Denkowska A., Gwiazda P., Kalita P. On renormalized solutions to elliptic inclusions with nonstandard growth // Calc. Var. Partial Differ. Equat. 2021. V. 60. № 21. P. 1-44.
  4. 4. Ait Khellou M., Benkirane A. Renormalized solution for nonlinear elliptic problems with lower order termsand $L^1$ data in Musielak-Orlicz spaces // Ann. of the Univ. of Craiova. Math. and Comput. Sci. Ser. 2016. V. 43. № 2. P. 164-187.
  5. 5. Elemine Vall M.S.B., Ahmedatt T., Touzani A., Benkirane A. Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data // Bol. Soc. Paran. Math. 2018. V. 36. № 1. P. 125-150.
  6. 6. Elarabi R., Rhoudaf M., Sabiki H. Entropy solution for a nonlinear elliptic problem with lower order term in Musielak-Orlicz spaces // Ricerche Mat. 2017. V. 62. № 2. P. 1-31.
  7. 7. Ait Khelloul M., Douiri S.M., El Hadfi Y. Existence of solutions for some nonlinear elliptic equations in Musielak spaces with only the log-H\\"older continuity condition // Mediterranean J. of Math. 2020. V. 17. Art. no. 33. P. 1-18.
  8. 8. Talha A., Benkirane A. Strongly nonlinear elliptic boundary value problems in Musielak-Orlicz spaces // Monatsh Math. Ann. of the Univ. of Craiova. Math. and Comput. Sci. Ser. 2018. V. 186. P. 745-776.
  9. 9. Li Ying., Fengping Y., Shulin Zh. Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak-Orlicz spaces // Nonlin. Anal. 2021. V. 61. P. 1-20.
  10. 10. Кожевникова Л.М. Эквивалентность энтропийных и ренормализованных решений анизотропной эллиптической задачи в неограниченных областях с данными в виде меры // Изв. вузов. Математика. 2020. № 1. С. 1-16.
  11. 11. Рутицкий Я.Б., Красносельский М.А. Выпуклые функции и пространства Орлича. М., 1958.
  12. 12. Musielak J. Orlicz Spaces and Modular Spaces. Lecture Notes in Math. V. 1034. Berlin, 1983.
  13. 13. Chlebicka I. A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces // Nonlin. Anal. 2018. № 175. P. 1-27.
  14. 14. Ahmida Y., Chlebicka I., Gwiazda P., Youssfi A. Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces // J. of Funct. Anal. 2018. V. 275. № 9. P. 2538-2571.
  15. 15. Данфорд Н., Шварц Дж.Т. Линейные операторы. Общая теория. М., 1962.
  16. 16. Ладыженская О.А., Уральцева Н.Н. Линейные и квазилинейные уравнения эллиптического типа. М., 1973.
  17. 17. Benkirane A., Sidi El Vally M. Variational inequalities in Musielak-Orlicz-Sobolev spaces // Bull. Belg. Math. Soc. Simon Stevin. 2014. V. 21. № 5. P. 787-811.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library