- Код статьи
- S30345030S0374064125080013-1
- DOI
- 10.7868/S3034503025080013
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 61 / Номер выпуска 8
- Страницы
- 1011-1031
- Аннотация
- На римановом многообразии размерности большей или равной трём рассматривается непустое компактное множество, инвариантное для некоторого C[-1]-гладкого потока. Предлагаются достаточные условия, при выполнении которых это множество является гиперболическим множеством данного потока.
- Ключевые слова
- риманово многообразие инвариантное множество поток гиперболичность
- Дата публикации
- 07.12.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 33
Библиография
- 1. Смейл, С. Дифференцируемые динамические системы / С. Смейл // Успехи мат. наук. — 1970. — Т. 25, № 1 (151). — С. 113–185.
- 2. Динамические системы с гиперболическим поведением / Д.В. Аносов, С.Х. Арансон, В.З. Гринес [и др.] // Динамические системы-9. Итоги науки и техн. Сер. Соврем. проблемы математики. Фунд. направления. — М. : ВИНИТИ, 1991. — Т. 66. — С. 5–242.
- 3. Аносов, Д.В. Геодезические потоки на замкнутых римановых многообразных отрицательной кривизны / Д.В. Аносов // Тр. Мат. ин-та СССР. — 1967. — Т. 90. — С. 3–210.
- 4. Каток, А.Б. Введение в современную теорию динамических систем / А.Б. Каток, Б. Хасселблат ; пер. с англ. А. Кононенко при участии С. Ферлегера. — М. : Факторнал, 1999. — 768 с.
- 5. Каток, А.Б. Введение в теорию динамических систем с обзором последних достижений / А.Б. Каток, Б. Хасселблат ; пер. с англ. под ред. А.С. Городецкого. — М. : МЦНМО, 2005. — 464 с.
- 6. Пилогин, С.Ю. Пространства динамических систем / С.Ю. Пилогин. — М.-Ижевск : Регулярная и хаотическая динамика, Институт компьютерных исследований, 2008. — 270 с.
- 7. Гринес, В.З. Введение в топологическую классификацию каскадов на многообразных размерности два и три / В.З. Гринес, О.В. Починка. — М.-Ижевск : Регулярная и хаотическая динамика, Институт компьютерных исследований, 2019. — 424 с.
- 8. Grines, V. Surface Laminations and Chaotic Dynamical Systems / V. Grines, E. Zhuzhoma. — M.-Lhevsk: Izhevsk Institute of Computer Science, 2021. — 502 p.
- 9. Палис, Ж. Геометрическая теория динамических систем. Введение / Ж. Палис, В. ди Мелу ; пер. с англ. В.Н. Колокольцова ; под ред. и с послесп. Д.В. Аносова. — М. : Мир, 1986. — 301 с.
- 10. Песин, Я.Б. Лекции по теории частичной гиперболичности и устойчивой эргодичности / Я.Б. Песин ; пер. с англ. О.Д. Аносовой и П.И. Каледы ; под ред. Ю.С. Ильяшенко. — М. : МЦНМО, 2006. — 142 с.
- 11. Robinson, C. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos / C. Robinson. — 2nd ed. — Boca Raton : CRC Press, 1999. — 506 p.
- 12. Palis, J. Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors / J. Palis, F. Takens. — Cambridge : Cambridge University Press, 1993. — 234 p.
- 13. Глызин, С.Д. О некоторых достаточных условиях гиперболичности / С.Д. Глызин, А.Ю. Колесов, Н.Х. Розов // Тр. Мат. ин-та имени В.А. Стеклова. — 2020. — Т. 308. — С. 116–134.
- 14. Glyzin, S.D. On a method for verifying hyperbolicity / S.D. Glyzin, A.Y. Kolesov // Regular and Chaotic Dynamics. — 2025. — V. 30, № 1. — P. 45–56.
- 15. Кузнецов, С.П. Динамический хаос и гиперболические аттракторы: от математики к физике / С.П. Кузнецов. — М.-Ижевск : Регулярная и хаотическая динамика, Институт компьютерных исследований, 2013. — 488 с.