RAS MathematicsДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

CONSERVATIVE EQUATIONS IN FIELD THEORY — CONSERVATION AND SYMMETRY LAWS

PII
S0374064125060044-1
DOI
10.31857/S0374064125060044
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 6
Pages
763-785
Abstract
The paper introduces a new class of field equations (in Minkowski space), which are called conservative equations. The distinctive features of the introduced equations are their symmetry with respect to transformations with the unitary group U(2) and the presence of additional conservation laws corresponding to the group U(2). A gauge invariant system of equations combining the conservative equation and the Yang–Mills equations is considered. It is proposed to use this system of equations to describe the dynamics of a neutrino with a nonzero mass interacting with the SU(2) Yang–Mills field (field of weak interactions).
Keywords
пространство Минковского консервативное уравнение закон сохранения унитарная симметрия уравнение Дирака уравнение Вейля уравнение Ланцоша уравнения Янга–Миллса нейтрино
Date of publication
24.04.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Марчук, Н.Г. Класс полевых уравнений для нейтрино с ненулевой массой / Н.Г. Марчук // Теор. и мат. физика. — 2024. — Т. 219, № 3. — С. 422–439.
  2. 2. Марчук, Н.Г. Классификация полевых уравнений для спиноров Вейля и для ELKO спиноров / Н.Г. Марчук // Дифференц. уравнения. — 2025. — Т. 61, № 3. — С. 366–373.
  3. 3. Гельфанд, И.М. Представления группы вращений и группы Лоренца, их применения / И.М. Гельфанд, Р.А. Минлос, З.Я. Шапиро. — М. : Физматгиз, 1958. — 368 с.
  4. 4. Марчук, Н.Г. Теория алгебр Клиффорда и спиноров / Н.Г. Марчук, Д.С. Широков. — М. : URSS, Красанд, 2020. — 560 с.
  5. 5. Новиков, С.П. Современные геометрические структуры и поля / С.П. Новиков, И.А. Тайманов. — 2-е изд., испр. — М. : МЦНМО, 2014. — 584 с.
  6. 6. Абрамов, А.А. Введение в тензорный анализ и риманову геометрию : учеб. пособие / А.А. Абрамов. — 3-е изд. — М. : Кн. дом “Либроком”, 2011. — 122 с.
  7. 7. Lanczos, C. Die tensoranalytischen Beziehungen der Diracschen Gleichung / C. Lanczos // Zeits. f. Phys. — 1929. — Bd. 57, № 7. — S. 447–473.
  8. 8. Lanczos, C. Zur kovarianten Formulierung der Diracschen Gleichung / C. Lanczos // Zeits. f. Phys. — 1929. — Bd. 57, № 7. — S. 474–483.
  9. 9. Lanczos, C. Erhaltungssa¨tze in der feldma¨ßigen Darstellung der Diracschen Theorie / C. Lanczos // Zeits. f. Phys. — 1929. — Bd. 57, № 7. — S. 484–493.
  10. 10. Gsponer, A. Lanczos’s equation to replace Dirac’s equation? / A. Gsponer, J.-P. Hurni // Proc. of the Cornelius Lanczos Intern. Centenary Conf. Raleigh / Eds. J.D. Brown, M.T. Chu, D.C. Ellison, and R.J. Plemmons. — North Carolina, December 12–17, 1993. — SIAM, Philadelphia, 1994. — P. 509–512.
  11. 11. Хорн, Р. Матричный анализ / Р. Хорн, Ч. Джонсон ; пер. с англ. Х.Д. Икрамова, А.В. Князева, Е.Е. Тартышникова ; под ред. Х.Д. Икрамова. — М. : Мир, 1989. — 656 c.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library