В работах И.А. Лаппо-Данилевского были исследованы, в частности, решения системы линейных обыкновенных дифференциальных уравнений в окрестности изолированного полюса произвольного конечного порядка. Для фундаментальной матрицы решений такой системы был получен ряд, абсолютно сходящийся в выколотой (кольцевой) окрестности полюса. При этом для числовых коэффициентов указанного ряда, не зависящих от вида системы уравнений, были найдены рекуррентные соотношения достаточно сложного вида. В настоящей работе впервые получены явные формулы для этих коэффициентов. Приведён пример использования результатов для нахождения следа матрицы монодромии произвольной регулярной особой точки (полюса первого порядка) указанной системы уравнений в виде ряда, являющегося целой функцией элементов постоянной матрицы.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации