Получены двусторонние априорные оценки решения однородного вольтерровского интегро-дифференциального уравнения третьего порядка со степенной нелинейностью и разностным ядром. Показано, что нижняя априорная оценка, играющая роль весовой функции при построении метрики в конусе пространства непрерывных функций, неулучшаема. С помощью этих оценок методом весовых метрик (аналог метода А. Белицкого) доказана глобальная теорема о существовании, единственности и способе нахождения нетривиального решения в классе неотрицательных непрерывных на положительной полуоси функций начальной задачи для указанного интегро-дифференциального уравнения. Показано, что решение можно найти методом последовательных приближений, получена оценка скорости их сходимости к точному решению. Приведены примеры, иллюстрирующие полученные результаты.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации