К нахождению решения задачи Коши для нагруженного уравнения Кортевега--де Фриза в классе периодических бесконечнозонных функций применён метод обратной спектральной задачи. Предложены простой алгоритм построения уравнения Кортевега--де Фриза высокого порядка с нагруженными членами и вывод аналога системы дифференциальных уравнений Дубровина. Показано, что сумма равномерно сходящегося функционального ряда, построенного с помощью решения системы уравнений Дубровина и формулы первого следа, действительно удовлетворяет нагруженному нелинейному уравнению Кортевега--де Фриза. Кроме того, доказано, что если начальная функция является действительной $\pi $-периодической аналитической функцией, то и решение задачи Коши тоже является действительной аналитической функцией по переменной $x,$ а также что если число ${\pi}/{n},$ $n\in\mathbb{N},$ $n\ge2,$ является периодом начальной функции, то число ${\pi}/{n}$ является периодом для решения задачи Коши по переменной $x.$
Indexing
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation