Рассматривается линейно-выпуклая управляемая система, задаваемая совокупностью дифференциальных уравнений, с непрерывными матричными коэффициентами. В системе могут быть управляющие параметры, а также неопределённости (помехи), на возможные значения которых наложены жёсткие поточечные ограничения. Для данной системы на конечном отрезке времени с учётом ограничений исследуется задача гарантированного попадания на целевое множество из заданной начальной позиции, несмотря на действие помехи. Основным этапом решения задачи является построение альтернированного интеграла и множества разрешимости. Для построения последнего наибольшую вычислительную сложность представляет вычисление геометрической разности целевого множества и множества, определяемого помехой. Рассматривается двумерный пример указанной задачи, для которого предлагается способ нахождения множества разрешимости без необходимости овыпукления разности опорных функций множеств.
Исследована задача верификации попадания на целевое множество на конечном отрезке времени состояния линейной управляемой системы дифференциальных уравнений, включающей неопределённость (помеху), на которую наложено геометрическое, поточечное выпуклое ограничение. В случае с двумерным фазовым пространством предложен способ построения множества разрешимости без операции овыпукления, необходимой для вычисления опорной функции геометрической разности множеств. Получено уравнение типа Гамильтона–Якоби–Беллмана, которому удовлетворяет функция расстояния до множества разрешимости.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации