Представлены интегральные формулы для аппроксимации поверхностных градиента (от скалярной функции, заданной на поверхности) и дивергенции (от касательного векторного поля, заданного на поверхности), являющиеся аналогами известных формул для производных функции на плоскости. Получены оценки погрешности аппроксимации этих величин. Также рассмотрен вопрос о последующей аппроксимации интегралов, дающих выражение для поверхностных градиента и дивергенции, квадратурными суммами по значениям исследуемой функции в узлах, выбираемых на ячейках неструктурированной сетки, аппроксимирующей поверхность.
Рассмотрено гиперсингулярное интегральное уравнение на выпуклом ограниченном множестве на плоскости с интегралом, понимаемым в смысле конечной части по Адамару. Уравнения такого типа, в частности, возникают при решении краевой задачи Неймана для уравнений Лапласа и Гельмгольца на плоском экране в случае, когда решение ищется в виде потенциала двойного слоя. Для численного решения уравнения применена численная схема, основанная на кусочно-линейной аппроксимации неизвестной функции по треугольной конформной сетке и методе коллокаций. Доказана равномерная сходимость численных решений к точному на сетке при стремлении максимального диаметра ячеек к нулю.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации