Рассматривается начально-краевая задача для сингулярно возмущённой системы уравнений в частных производных. Ставится обратная задача, состоящая в определении неизвестного начального условия по дополнительной информации о решении начально-краевой задачи. Доказывается, что на основе использования разложения решения начально-краевой задачи по малому параметру $\varepsilon $ можно получить приближённые решения, аппроксимирующие решение обратной задачи с порядком $ O(\varepsilon) $ или $O(\varepsilon^2).$
Рассмотрена обратная задача для нелинейной математической модели динамики сорбции с неизвестным переменным кинетическим коэффициентом. Доказана теорема существования двух решений обратной задачи и обоснован итерационный метод её решения. Приведён пример применения предложенного метода для численного решения обратной задачи.
Рассмотрена начально-краевая задача для сингулярно возмущённой системы уравнений с частными производными. Поставлена обратная задача, состоящая в определении неизвестного граничного условия по одной из компонент решения начально-краевой задачи, заданной в фиксированной точке пространства. Предложены методы приближённого решения обратной задачи, основанные на использовании разложения решения начально-краевой задачи по малому параметру
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации