Доказывается необходимое и достаточное условие линеаризуемости нелинейных систем с одним управлением в классе преобразований, содержащих масштабирования времени и сохраняющих многообразие состояний. Даётся описание систем, которые получены однократным продолжением нелинейной системы с одним управлением и являются $A$-орбитально линеаризуемыми. Доказывается, что из $A$-орбитальной линеаризуемости системы, полученной однократным продолжением аффинной системы с одним управлением, следует $A$-орбитальная линеаризуемость и исходной системы. Показывается, что если система, полученная $k$-кратным продолжением нелинейной системы с одним управлением, где $k\ge 2,$ $A$-орбитально линеаризуема, то и система, полученная из исходной системы её однократным продолжением, также $A $-орбитально линеаризуема.
Для аффинных систем с одним управлением рассматривается проблема A-орбитальной линеаризации в окрестности особых точек производного флага распределения, ассоциированного с системой. Под особой точкой производного флага понимается такая точка, что хотя бы один из элементов производного флага в любой её окрестности не является распределением постоянного ранга. Доказывается локальное необходимое и достаточное условие A-орбитальной эквивалентности по обратной связи и состоянию аффинной системы с одним управлением линейной управляемой системе, рассматриваемой в окрестности нулевого положения равновесия.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации