Асимптотическими методами исследованы решения модифицированного логистического уравнения с запаздыванием, содержащего большой параметр. Приведён результат о существовании и устойчивости релаксационного цикла.
Исследована локальная динамика логистического уравнения с запаздыванием и с дополнительной обратной связью, содержащей большое запаздывание. Выделены критические случаи в задаче об устойчивости нулевого состояния равновесия. Показано, что они имеют бесконечную размерность. Хорошо известные методы изучения локальной динамики, основанные на применении теории инвариантных интегральных многообразий и нормальных форм, здесь не применимы, поэтому использованы и развиты предложенные автором методы бесконечномерной нормализации. Построены специальные нелинейные краевые задачи параболического типа, играющие роль нормальных форм. Они определяют главные члены асимптотических разложений решений исходного уравнения, которые называют квазинормальными формами.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации