Рассмотрен оператор Пуанкаре-Стеклова для изотропной стратифицированной упругой полосы, отображающий на части границы нормальные напряжения в нормальные перемещения. Для построения трансформанты ядра интегрального представления этого оператора предложен новый подход. Получена вариационная формулировка краевой задачи для трансформант перемещений. Дано определение и доказаны существование и единственность обобщённого решения задачи. Построен итерационный метод решения вариационных уравнений и на основе принципа сжатых отображений получены условия его сходимости. Аппроксимация вариационных уравнений проводилась методом конечных элементов. В результате на каждом шаге итерационного метода требуется решить две независимые системы линейных алгебраических уравнений, для решения которых применяется метод прогонки. Предложен эвристический алгоритм выбора последовательности параметров итерационного метода, обеспечивающей его сходимость. Проведена верификация разработанного вычислительного алгоритма и даны рекомендации по использованию адаптивных конечно-элементных сеток.
Рассматривается оператор Пуанкаре–Стеклова для однородной изотропной упругой полуплоскости со стратифицированным упругим покрытием, отображающий на части границы покрытия нормальные напряжения в нормальные перемещения. Для построения передаточной функции этого оператора используется вариационная формулировка краевой задачи для трансформант перемещений. Даётся определение и доказываются существование и единственность обобщённого решения вариационной задачи. Аппроксимация этой задачи проводится методом конечных элементов. Для численного решения полученной системы линейных алгебраических уравнений используется предобусловленный метод сопряжённых градиентов. Проводится верификация разработанного вычислительного алгоритма.
Indexing
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation