Рассматривается линейно-выпуклая управляемая система, задаваемая совокупностью дифференциальных уравнений, с непрерывными матричными коэффициентами. В системе могут быть управляющие параметры, а также неопределённости (помехи), на возможные значения которых наложены жёсткие поточечные ограничения. Для данной системы на конечном отрезке времени с учётом ограничений исследуется задача гарантированного попадания на целевое множество из заданной начальной позиции, несмотря на действие помехи. Основным этапом решения задачи является построение альтернированного интеграла и множества разрешимости. Для построения последнего наибольшую вычислительную сложность представляет вычисление геометрической разности целевого множества и множества, определяемого помехой. Рассматривается двумерный пример указанной задачи, для которого предлагается способ нахождения множества разрешимости без необходимости овыпукления разности опорных функций множеств.
Рассмотрена нелинейная по фазовым переменным система обыкновенных дифференциальных уравнений с управляющими параметрами, на возможные значения которых наложены поточечные ограничения. Необходимо решить задачу о переводе траектории системы из произвольной начальной позиции в наименьшую возможную окрестность заданного целевого множества на фиксированном отрезке времени за счёт выбора соответствующего позиционного управления. Для её решения построена непрерывная кусочно-кубическая функция специального вида. Множества уровней этой функции задают внутренние оценки для множеств разрешимости исследуемой системы. Используя указанную функцию, можно также построить синтез управлений, решающий задачу целевого управления на конечном отрезке времени. Предложены формулы для расчёта значений кусочно-кубической функции, исследованы её свойства, рассмотрен алгоритм поиска задающих эту функцию параметров.
Исследована задача верификации попадания на целевое множество на конечном отрезке времени состояния линейной управляемой системы дифференциальных уравнений, включающей неопределённость (помеху), на которую наложено геометрическое, поточечное выпуклое ограничение. В случае с двумерным фазовым пространством предложен способ построения множества разрешимости без операции овыпукления, необходимой для вычисления опорной функции геометрической разности множеств. Получено уравнение типа Гамильтона–Якоби–Беллмана, которому удовлетворяет функция расстояния до множества разрешимости.
Indexing
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation