Рассмотрена задача Дирихле для дифференциально-разностного уравнения второго порядка в дивергентном виде с переменными коэффициентами на конечном интервале $Q=(0,d).$ Исследованы условия на правую часть уравнения, обеспечивающие гладкость обобщённого решения на всём интервале. Доказано, что обобщённое решение задачи принадлежит пространству Соболева $W_2^2(Q)$ в случае ортогональности правой части в пространстве $L_2(Q)$ конечному числу линейно независимых функций.
Рассмотрена первая смешанная задача для системы Власова—Пуассона с внешним магнитным полем в области с кусочно-гладкой границей. Эта задача описывает кинетику двухкомпонентной высокотемпературной плазмы под действием самосогласованного электрического поля и внешнего магнитного поля. Доказано существование глобальных слабых решений. В случае цилиндрической области получены достаточные условия существования глобальных слабых решений с носителями в строго внутреннем цилиндре, что соответствует удержанию высокотемпературной плазмы в пробочной ловушке.
Indexing
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation