= УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ =

УДК 517.956.6

ОБ ОДНОЙ НЕЛОКАЛЬНОЙ ЗАДАЧЕ ДЛЯ УРАВНЕНИЯ ГЕЛЛЕРСТЕДТА С СИНГУЛЯРНЫМИ КОЭФФИЦИЕНТАМИ

© М. Мирсабуров¹, Р. Н. Тураев²

Термезский государственный университет, Узбекистан e-mail: ¹mirsaburov@mail.ru, ²rasul.turaev@mail.ru

Поступила в редакцию 27.10.2023 г., после доработки 18.12.2023 г.; принята к публикации 29.04.2024 г.

Исследован вопрос однозначной разрешимости нелокальной краевой задачи с условиями типа Бицадзе—Самарского и Франкля для уравнения смешаного типа с сингулярными коэффициентами.

Ключевые слова: уравнение смешанного типа, сингулярный коэффициент, условие Бицадзе-Самарского, условие Франкля, сингулярное интегральное уравнение, нефредгольмов оператор, интегральное уравнение Винера-Хопфа, уравнение Фредгольма второго рода.

DOI: 10.31857/S0374064124080079, EDN: KCOOME

1. ПОСТАНОВКА ЗАДАЧИ

Пусть $D=D^+\cup D^-\cup I$ — область комплексной плоскости $\mathbb{C}=\{z=x+iy\}$, где D^+ — полуплоскость $y>0,\ D^-$ — конечная область полуплоскости y<0, ограниченная характеристиками уравнения

$$(\operatorname{sign} y)|y|^{m}u_{xx} + u_{yy} + \frac{\alpha_{0}}{|y|^{1-m/2}}u_{x} + \frac{\beta_{0}}{y}u_{y} = 0, \tag{1}$$

исходящими из точек A(-1,0) и B(1,0), и отрезком AB прямой y=0. Через C_0 и C_1 , соответственно, обозначим точки пересечения характеристик AC и BC с характеристиками, исходящими из точки E(c,0), где $c\in (-1,1)$. Действительные параметры m, α_0 и β_0 уравнения (1) удовлетворяют условиям m>0, $|\alpha_0|<(m+2)/2$, $-m/2<\beta_0<1$.

Отметим, что многие свойства решений уравнения (1) существенно зависят от числовых параметров α_0 и β_0 при его младших членах. На плоскости параметров α_0 и β_0 рассматривается треугольник $A_0^*B_0^*C_0^*$, ограниченный прямыми

$$A_0^*C_0^*$$
: $\beta_0 + \alpha_0 = -m/2$, $B_0^*C_0^*$: $\beta_0 - \alpha_0 = -m/2$, $A_0^*B_0^*$: $\beta_0 = 1$,

и в зависимости от положения точки $P(\alpha_0, \beta_0)$ в этом треугольнике формулируются и исследуются задачи для уравнения (1).

Рассмотрим случай, когда $P(\alpha_0, \beta_0) \in \Delta E_0^* C_0^* B_0^* \cup E_0^* C_0^*$, где $E_0^* = E_0^* (0, 1)$.

В работе [1] в конечной области была исследована задача с условием Бицадзе-Самарского [2] на граничной характеристике AC и на параллельной ей внутренней характеристике EC_0 . В настоящей статье исследуется задача, в которой условие Бицадзе-Самарского задаётся на части AC_0 граничной характеристики AC и на параллельной ей внутренней характеристике EC_1 , т.е. часть C_0C граничной характеристики AC освобождена от условия Бицадзе-Самарского, и это недостающее нелокальное условие заменено условием Франкля [3–7] на отрезке вырождения AB.

Пусть D_R^+ — конечная область, отсекаемая от полуплоскости D^+ дугой нормальной кривой σ_R с концами в точках $A_R = A_R(-R,0), B_R = B_R(R,0)$:

$$\sigma_R$$
: $x^2 + 4(m+2)^{-2}y^{m+2} = R^2$, $-R \le x \le R$, $0 \le y \le ((m+2)R/2)^{2/(m+2)}$.

Введём обозначения: $I = \{(x,y) \colon -1 < x < 1, \ y=0\}, \ \overline{I} = \{(x,y) \colon -1 \leqslant x \leqslant 1, \ y=0\}, \ \overline{I}_1 = \{(x,y) \colon -\infty < x \leqslant -1, \ y=0\}, \ \overline{I}_2 = \{(x,y) \colon 1 \leqslant x < +\infty, \ y=0\}.$

Введём линейные функции p(x)=ax-b и q(x)=a-bx, отображающие отрезок [-1,1] на отрезки [-1,c] и [c,1] соответственно, причём $p(-1)=-1,\ p(1)=c,\ q(-1)=1,\ q(1)=c,$ $a=(1+c)/2,\ b=(1-c)/2$ [8].

Задача. Найти функцию $u(x,y)\in C(\overline{D}_R)\cap C^2(D^+)$, удовлетворяющую уравнению (1) в D_R и следующим условиям:

- 1) u(x,y) является обобщённым решением из класса $R_1(D^-)$ [9, с. 104; 10, с. 35];
- 2) имеет место условие сопряжения

$$\lim_{y \to -0} (-y)^{\beta_0} \frac{\partial u}{\partial y} = \lim_{y \to +0} y^{\beta_0} \frac{\partial u}{\partial y}, \quad x \in I,$$
 (2)

причём пределы в (2) при $x=\pm 1$ могут иметь особенности порядка ниже $1-\alpha-\beta$, где $\alpha=(m+2(\beta_0+\alpha_0))/(2(m+2)),\ \beta=(m+2(\beta_0-\alpha_0))/(2(m+2)),\ \alpha>0,\ \beta>0,\ \alpha+\beta<1;$

3) выполняется равенство

$$\lim_{R \to +\infty} u(x,y) = 0,\tag{3}$$

где $R^2 = x^2 + 4(m+2)^{-2}y^{m+2}$;

4) справедливы краевые условия

$$u(x,y)|_{y=0} = \varphi_i(x), \quad x \in \overline{I}_i, \quad i=1,2;$$
 (4)

$$\mu_0(1+x)^{\alpha} D_{-1,x}^{1-\beta} u[\theta(p(x))] = \mu_1(1-x)^{\alpha} D_{x,1}^{1-\beta} u[\theta^*(q(x))] + \psi(x), \quad x \in \overline{I};$$
 (5)

$$u(p(x),0) - u(q(x),0) = f(x), \quad x \in \overline{I}, \tag{6}$$

где μ_0 , μ_1 — некоторые постоянные, причём $\mu_0^2 + \mu_1^2 \neq 0$; $D_{-1,x}^{1-\beta}$, $D_{x,1}^{1-\beta}$ — операторы дифференцирования дробного порядка [9, с. 16];

$$\theta(x_0) = \frac{x_0 - 1}{2} - i \left[\frac{m + 2}{4} (1 + x_0) \right]^{2/(m + 2)}, \quad x_0 \in [-1, c],$$

— аффикс точки пересечения характеристики AC_0 с характеристикой, исходящей из точки $M_0(x_0,0), x_0 \in [-1,c];$

$$\theta^*(x_0) = \frac{x_0 + c}{2} - i \left[\frac{m+2}{4} (x_0 - c) \right]^{2/(m+2)}, \quad x_0 \in [c, 1],$$

— аффикс точки пересечения характеристики EC_1 с характеристикой, исходящей из точки $M_0(x_0,0),\ x_0\in[c,1];\ \varphi_1(x),\ \varphi_2(x),\ \psi(x),\ f(x)$ — заданные функции, причём $\varphi_1(-1)=0,\ \varphi_2(1)=0,\ \varphi_1(-\infty)=0,\ \varphi_2(+\infty)=0,\ f(1)=0,\ \psi(x)\in C(\overline{I})\cap C^1(I),\ f(x)\in C(\overline{I})\cap C^1(I),\ функции <math>\varphi_i(x)$ непрерывно дифференцируемы на любых отрезках $[-N,-1],\ [1,N]$ и для достаточно больших |x| удовлетворяют неравенству $|\varphi_i(x)|\leqslant M|x|^{-\delta_0}$, где δ_0 — положительная постоянная.

Заметим, что условие Бицадзе—Самарского (5) задаётся на части AC_0 (где $\theta(p(x)) \in AC_0$) граничной характеристики AC и на внутренней характеристике EC_1 (где $\theta^*(q(x)) \in EC_1$), а (6) (где $-1 \le p(x) \le c$, $c \le q(x) \le 1$) является условием типа Франкля на промежутках [-1,c] и [c,1] отрезка вырождения AB. Обозначим $u(x,0) = \tau(x)$, тогда условие (6) примет вид

$$\tau(p(x)) - \tau(q(x)) = f(x), \quad x \in I. \tag{7}$$

Решение уравнения (1) в области D^- , удовлетворяющее начальным условиям типа Коши

$$u(x,-0) = \tau(x), \quad x \in \overline{I}; \quad \lim_{y \to -0} (-y)^{\beta_0} \frac{\partial u}{\partial y} = \nu(x), \quad x \in I,$$

определяется формулой Дарбу [10, с. 34]:

$$u(x,y) = \gamma_1 \int_{-1}^{1} \tau \left[x + \frac{2t}{m+2} (-y)^{\frac{m+2}{2}} \right] (1-t)^{\alpha-1} (1+t)^{\beta-1} dt +$$

$$+ \gamma_2 (-y)^{1-\beta_0} \int_{-1}^{1} \nu \left[x + \frac{2t}{m+2} (-y)^{\frac{m+2}{2}} \right] (1-t)^{-\beta} (1+t)^{-\alpha} dt,$$

где

$$\gamma_1 = \frac{\Gamma(\alpha+\beta)2^{1-\alpha-\beta}}{\Gamma(\alpha)\Gamma(\beta)}, \quad \gamma_2 = -\frac{\Gamma(2-\alpha-\beta)2^{\alpha+\beta-1}}{(1-\beta_0)\Gamma(1-\alpha)\Gamma(1-\beta)}.$$

Вычислим

$$u[\theta(p(x))] = \gamma_1 \left(\frac{1+x}{2}\right)^{1-\alpha-\beta} \Gamma(\alpha) D_{-1,x}^{-\alpha} (1+x)^{\beta-1} \tau(p(x)) +$$

$$+ \gamma_2 \left(\frac{m+2}{2}\right)^{1-\alpha-\beta} a^{1-\alpha-\beta} \Gamma(1-\beta) D_{-1,x}^{\beta-1} (1+x)^{-\alpha} \nu(p(x)),$$

$$u[\theta^*(q(x))] = \gamma_1 \left(\frac{1-x}{2}\right)^{1-\alpha-\beta} \Gamma(\alpha) D_{x,1}^{-\alpha} (1-x)^{\beta-1} \tau(q(x)) +$$

$$+ \gamma_2 \left(\frac{m+2}{2}\right)^{1-\alpha-\beta} b^{1-\alpha-\beta} \Gamma(1-\beta) D_{x,1}^{\beta-1} (1-x)^{-\alpha} \nu(q(x)).$$
(9)

С учётом (8) и (9) найдём производные дробного порядка

$$D_{-1,x}^{1-\beta}u[\theta(p(x))] = \gamma_1 \left(\frac{1}{2}\right)^{1-\alpha-\beta} \Gamma(\alpha)(1+x)^{-\alpha} D_{-1,x}^{1-\alpha-\beta} \tau(p(x)) +$$

$$+ \gamma_2 \left(\frac{m+2}{2}\right)^{1-\alpha-\beta} a^{1-\alpha-\beta} \Gamma(1-\beta)(1+x)^{-\alpha} \nu(p(x)),$$

$$D_{x,1}^{1-\beta}u[\theta^*(q(x))] = \gamma_1 \left(\frac{1}{2}\right)^{1-\alpha-\beta} \Gamma(\alpha)(1-x)^{-\alpha} D_{x,1}^{1-\alpha-\beta} \tau(q(x)) +$$

$$+ \gamma_2 \left(\frac{m+2}{2}\right)^{1-\alpha-\beta} b^{1-\alpha-\beta} \Gamma(1-\beta)(1-x)^{-\alpha} \nu(q(x)).$$
(11)

Теперь в силу (10) и (11) из условия (5) получим

$$a^{1-\alpha-\beta}\nu(p(x)) - b^{1-\alpha-\beta}\nu(q(x)) =$$

$$= \gamma \left[\mu_0 D_{-1,x}^{1-\alpha-\beta} \tau(p(x)) - \mu_1 D_{x,1}^{1-\alpha-\beta} \tau(q(x))\right] + \Psi_1(x), \quad x \in I,$$
(12)

где $\Psi_1(x) = (1-x^2)^{\alpha} \psi(x) / \gamma_2((m+2)/2)^{1-\alpha-\beta} \Gamma(1-\beta).$

Равенство (12) является первым функциональным соотношением между неизвестными функциями $\tau(x)$ и $\nu(x)$, привнесённым на интервал I оси y=0 из области D^- .

2. ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ЗАДАЧИ

Теорема 1. Пусть $\varphi_1(x) \equiv 0$, $\varphi_2(x) \equiv 0$, $\psi(x) \equiv 0$, $f(x) \equiv 0$,

$$\mu_0 > 0, \quad \mu_1 < 0,$$
 (13)

тогда решение u(x,y) задачи достигает своих наибольшего положительного значения (НПЗ) и наименьшего отрицательного значения (НОЗ) в области \overline{D}_R^+ на кривой σ_R .

Доказательство. В силу принципа Хопфа [11, с. 25] решение u(x,y) своих НПЗ и НОЗ во внутренних точках (x_0,y_0) области D_R^+ не достигает.

Допустим, что функция u(x,y) достигает своего НПЗ в области \bar{D}_R^+ в некоторой внутренней точке $(x_0,0)$ отрезка AB. Здесь рассмотрим два случая возможного расположения точки x_0 .

1. Пусть $x_0 \in (-1, c]$, $x_0 = p(\xi_0)$. Тогда в силу соответствующего однородного условия (7) $(f(x) \equiv 0)$ решение u(x, y) достигает своего НПЗ в двух точках: $(p(\xi_0), 0)$ и $(q(\xi_0), 0)$. Следовательно, в этих точках $\nu(p(\xi_0)) < 0$, $\nu(q(\xi_0)) < 0$ [10, с. 74]. Отсюда с учётом (13) имеем

$$\mu_0 a^{1-\alpha-\beta} \nu(p(\xi_0)) - \mu_1 b^{1-\alpha-\beta} \nu(q(\xi_0)) < 0, \quad \xi_0 \in I.$$
(14)

С другой стороны, хорошо известно, что для операторов дробного дифференцирования в точке положительного максимума функции $\tau(x)$ имеют место неравенства $D_{-1,x}^{1-\alpha-\beta}\tau(p(x))|_{x=x_0}>0$, $D_{x.1}^{1-\alpha-\beta}\tau(q(x))|_{x=x_0}>0$, тогда в силу (13)

$$\mu_0 D_{-1,x}^{1-\alpha-\beta} \tau(p(x))|_{x=\xi_0} - \mu_1 D_{x,1}^{1-\alpha-\beta} \tau(q(x))|_{x=\xi_0} > 0.$$

Отсюда заключаем, что левая часть соответствующего однородного соотношения (12) $(\Psi_1(x) \equiv 0)$ строго положительна, что противоречит неравенству (14), следовательно, $x_0 = p(\xi_0) \notin (-1, c]$.

2. Пусть $x_0 \in [c,1), \ x_0 = q(\eta_0).$ Рассуждая аналогично случаю 1, заключаем, что $x_0 = q(\eta_0) \notin [c,1).$

Таким образом, решение u(x,y), удовлетворяющее условиям теоремы, своего НПЗ во внутренних точках интервала I не достигает. В силу соответствующих однородных краевых условий (4) $(\varphi_1(x) \equiv 0, \ \varphi_2(x) \equiv 0)$ функция u(x,y) своего НПЗ не достигает и в точках из $[-R,-1] \cup [1,R]$. Следовательно, $(x_0,y_0) \in \sigma_R$.

Также можно показать, что точка (x_0, y_0) , в которой решение u(x, y) достигает своего НОЗ в области D_R^+ , принадлежит σ_R , т.е. $(x_0, y_0) \in \sigma_R$. Теорема доказана.

Из теоремы 1 вытекает

Следствие 1. Решение u(x,y), удовлетворяющее условиям теоремы 1, в области D^+ тождественно равно нулю.

Доказательство. Решение задачи при выполнении условий теоремы 1 в области \overline{D}_R^+ достигает своих НПЗ и НОЗ в точках нормальной кривой σ_R . В силу (3) для любого $\varepsilon > 0$ существует такое число $R_0 = R_0(\varepsilon)$, что при $R > R_0(\varepsilon)$ выполняется неравенство $|u(x,y)| < \varepsilon$, $(x,y) \in \sigma_R$, следовательно, в силу теоремы 1 $|u(x,y)| < \varepsilon$ для любых $(x,y) \in \overline{D}_R^+$. Отсюда, в силу произвольности ε , при $R \to +\infty$ заключаем, что $u(x,y) \equiv 0$ в области $D^+ \cup I_1 \cup I \cup I_2$. Следствие доказано.

Следствие 2. Задача при выполнении условий теоремы 1 имеет не более одного решения. Доказательство. В силу следствия 1 с учётом условия сопряжения (2) имеем

$$\lim_{y \to -0} u(x, y) \equiv 0, \quad x \in \bar{I}; \quad \lim_{y \to -0} (-y)^{\beta_0} \frac{\partial u}{\partial y} \equiv 0, \quad x \in I.$$
 (15)

Теперь в области D^- , записав решение u(x,y) с помощью формулы Дарбу с нулевыми данными (15), получим, что $u(x,y) \equiv 0$ и в области \overline{D}^- . Следствие доказано.

Таким образом, доказана единственность решения задачи.

Теорема 2. Задача при выполнении условий (13) и

$$\frac{-\lambda \pi^{2} \sqrt{b}}{\lambda_{0} \sqrt{a} \sin(\delta \pi)} \left[\mu_{0} \frac{a^{2-4a_{0}}}{b^{1+\delta} e^{b_{0}\pi}} - \mu_{1} \frac{b^{1-4a_{0}}}{a^{\delta} e^{-b_{0}\pi}} \right] < 1,$$

$$\lambda_{0} = \mu_{0} \left[\pi e^{-b_{0}\pi} \cot(2a_{0}\pi) - e^{b_{0}\pi} \Gamma(2a_{0}) \Gamma(1-2a_{0}) - \gamma_{0} \Gamma(1-2a_{0}) \right] +$$

$$+ \mu_{1} \left[\pi e^{b_{0}\pi} \cot(2a_{0}\pi) - e^{-b_{0}\pi} \Gamma(2a_{0}) \Gamma(1-2a_{0}) + \gamma_{0} \Gamma(1-2a_{0}) \cos(2a_{0}\pi) \right] \neq 0,$$
(16)

 $\partial e \lambda = -(\mu_0 e^{-b_0 \pi} - \mu_1 e^{b_0 \pi} + \mu_1 \gamma_0 (\Gamma(2a_0))^{-1})/\lambda_0$, однозначно разрешима.

Покажем, что множество числовых параметров задачи, удовлетворяющее неравенству (16), не пусто. Действительно, положив в (16) $\mu_1 = -a^{2-4a_0+\delta}$, имеем

$$-\frac{\lambda \pi^2 \sqrt{b} a^{2-4a_0-0.5}}{\lambda_0 \sin(\delta \pi)} \left[\mu_0 \frac{e^{-b_0 \pi}}{b^{1+\delta}} + b^{1-4a_0} e^{b_0 \pi} \right] < 1, \tag{17}$$

если $2-4a_0-1/2>0$ (т.е. $\beta_0<6-m/8$). Тогда для значений числового параметра c, достаточно близких к -1, множитель $a^{2-4a_0-1/2}=((1+c)/2)^{2-4a_0-1/2}$ в (17) будет достаточно малым и неравенство (17) (а значит и (16)) при таких значениях c будет выполняться.

2.1. ВЫВОД СИНГУЛЯРНОГО ИНТЕГРАЛЬНОГО УРАВНЕНИЯ С НЕФРЕДГОЛЬМОВЫМИ ОПЕРАТОРАМИ В НЕХАРАКТЕРИСТИЧЕСКОЙ ЧАСТИ УРАВНЕНИЯ ОТНОСИТЕЛЬНО НЕИЗВЕСТНОЙ ФУНКЦИИ $\tau_1(x)$

Решение задачи Дирихле в полуплоскости $y \geqslant 0$, удовлетворяющее условию

$$u(x,+0) = \tau(x), \quad x \in \mathbb{R},\tag{18}$$

даётся формулой [7]

$$u(x,y) = k_2(1-\beta_0)y^{1-\beta_0} \int_{-\infty}^{+\infty} \tau(t)(r_0^2)^{a_0-1} \exp\left\{-2b_0 \arcsin \frac{t-x}{r_0}\right\} dt, \quad x \in \mathbb{R}, \quad y \geqslant 0,$$
 (19)

где

$$k_2 = \frac{1}{4\pi} \left(\frac{4}{m+2} \right)^{1-2a_0} \frac{\Gamma(1-\delta)\Gamma(1-\overline{\delta})}{\Gamma(2-\delta-\overline{\delta})}, \quad r_0^2 = (x-t)^2 + \frac{4}{(m+2)^2} y^{m+2},$$
$$2a_0 = \alpha + \beta, \quad \delta = a_0 + ib_0, \quad b_0 = -\frac{\alpha_0}{m+2}.$$

В (18) значения $\tau(x)$ при $x \in (-\infty, -1] \cup [1, +\infty)$ в силу условий (4) известны, с учётом этого формулу (19) преобразуем к виду

$$u(x,y) = k_2(1-\beta_0)y^{1-\beta_0} \int_{-1}^{1} \tau(t)(r_0^2)^{a_0-1} \exp\left\{-2b_0 \arcsin \frac{t-x}{r_0}\right\} dt + F(x,y), \quad x \in \mathbb{R}, \quad y \geqslant 0, \quad (20)$$

где

$$F(x,y) = k_2(1-\beta_0)y^{1-\beta_0} \left(\int_{-\infty}^{-1} \varphi_1(t)(r_0^2)^{a_0-1} \exp\left\{-2b_0 \arcsin \frac{t-x}{r_0}\right\} dt + \int_{1}^{+\infty} \varphi_2(t)(r_0^2)^{a_0-1} \exp\left\{-2b_0 \arcsin \frac{t-x}{r_0}\right\} dt \right)$$

— известная функция.

Продифференцировав (20) по у с учётом тождества

$$\frac{\partial}{\partial y}\bigg(y^{1-\beta_0}(r_0^2)^{a_0-1}\exp\bigg\{-2b_0\arcsin\frac{t-x}{r_0}\bigg\}\bigg) = \frac{m+2}{2}y^{-\beta_0}\frac{\partial}{\partial t}\bigg((x-t)(r_0^2)^{a_0-1}\exp\bigg\{-2b_0\arcsin\frac{t-x}{r_0}\bigg\}\bigg),$$

получим

$$\frac{\partial u}{\partial y} = k_2 (1 - \beta_0) \frac{m+2}{2} y^{-\beta_0} \int_{-1}^{1} \tau(t) \frac{\partial}{\partial t} \left[(x-t)(r_0^2)^{a_0-1} \exp\left\{ -2b_0 \arcsin \frac{t-x}{r_0} \right\} \right] dt + \frac{\partial F(x,y)}{\partial y}. \quad (21)$$

Умножим обе части равенства (21) на y^{β_0} , затем перейдём к пределу при $y \to +0$, далее выполнив операцию интегрирования по частям, приходим к соотношению

$$\nu(x) = -k_2(1 - \beta_0) \frac{m+2}{2} \int_{-1}^{1} \tau'(t) \left[\frac{x-t}{|x-t|^{2-2a_0}} \exp\left\{ -2b_0 \arcsin\frac{t-x}{|t-x|} \right\} \right] dt + \Phi(x), \quad x \in I, \quad (22)$$

где

$$\Phi(x) = \lim_{y \to +0} y^{\beta_0} \frac{\partial F(x,y)}{\partial y} = -k_2 (1 - \beta_0) \frac{m+2}{2} \left(e^{b_0 \pi} \int_{-\infty}^{-1} \frac{\tau_1'(t) dt}{(x-t)^{1-2a_0}} - e^{-b_0 \pi} \int_{1}^{+\infty} \frac{\tau_2'(t) dt}{(t-x)^{1-2a_0}} \right).$$

Заметим, что соотношение (22) справедливо для всего промежутка I.

В силу (22), исключив $\nu(p(x))$ и $\nu(q(x))$ из соотношения (12), имеем

$$-\mu_{0}k_{2}(1-\beta_{0})\frac{m+2}{2}a^{1-2a_{0}}\int_{-1}^{1}\tau'(t)\left[\frac{p(x)-t}{|p(x)-t|^{2-2a_{0}}}\exp\left\{-2b_{0}\arcsin\frac{t-p(x)}{|t-p(x)|}\right\}\right]dt + \\ +\mu_{1}k_{2}(1-\beta_{0})\frac{m+2}{2}b^{1-2a_{0}}\int_{-1}^{1}\tau'(t)\left[\frac{q(x)-t}{|q(x)-t|^{2-2a_{0}}}\exp\left\{-2b_{0}\arcsin\frac{t-q(x)}{|t-q(x)|}\right\}\right]dt = \\ =\gamma\left[\mu_{0}D_{-1,x}^{1-2a_{0}}\tau(p(x))-\mu_{1}D_{x,1}^{1-2a_{0}}\tau(q(x))\right]+\Psi_{2}(x), \quad x \in I,$$

$$(23)$$

где

$$\Psi_2(x) = \Psi_1(x) - \mu_0 a^{1-2a_0} \Phi(p(x)) + \mu_1 b^{1-2a_0} \Phi(q(x)).$$

С учётом неравенств $-1\leqslant p(x)\leqslant c$ и $c\leqslant q(x)\leqslant 1$ запишем интегро-дифференциальное уравнение (23) в виде

$$-\mu_{0}a^{1-2a_{0}}e^{b_{0}\pi} \int_{-1}^{p(x)} \frac{\tau'(t) dt}{(p(x)-t)^{1-2a_{0}}} + \mu_{0}a^{1-2a_{0}}e^{-b_{0}\pi} \int_{p(x)}^{c} \frac{\tau'(t) dt}{(t-p(x))^{1-2a_{0}}} +$$

$$+\mu_{0}a^{1-2a_{0}}e^{-b_{0}\pi} \int_{c}^{1} \frac{\tau'(t) dt}{(t-p(x))^{1-2a_{0}}} + \mu_{1}b^{1-2a_{0}}e^{b_{0}\pi} \int_{-1}^{c} \frac{\tau'(t) dt}{(q(x)-t)^{1-2a_{0}}} +$$

$$+\mu_{1}b^{1-2a_{0}}e^{b_{0}\pi} \int_{c}^{q(x)} \frac{\tau'(t) dt}{(q(x)-t)^{1-2a_{0}}} - \mu_{1}b^{1-2a_{0}}e^{-b_{0}\pi} \int_{q(x)}^{1} \frac{\tau'(t) dt}{(t-q(x))^{1-2a_{0}}} =$$

$$= \gamma_{0} \left[\mu_{0}D_{-1,x}^{1-2a_{0}}\tau(p(x)) + \mu_{1}D_{x,1}^{1-2a_{0}}\tau(q(x))\right] + \Psi_{3}(x), \quad x \in I,$$
(24)

где $\gamma_0 = 2\gamma/k_2(1-\beta_0)(m+2)$, $\Psi_3(x) = 2\Psi_2(x)/k_2(1-\beta_0)(m+2)$.

В интегралах (24) с промежутками интегрирования (-1,p(x)), (p(x),c), (-1,c) сделаем замену переменной интегрирования t=p(s), а в интегралах с промежутками (c,q(x)), (q(x),1) и (c,1) — замену t=q(s). Получим

$$-\mu_{0}a^{2-2a_{0}}e^{b_{0}\pi}\int_{-1}^{x}\frac{\tau'(p(s))\,ds}{(p(x)-p(s))^{1-2a_{0}}}+\mu_{0}a^{2-2a_{0}}e^{-b_{0}\pi}\int_{x}^{1}\frac{\tau'(p(s))\,ds}{(p(s)-p(x))^{1-2a_{0}}}+$$

$$+\mu_{0}ba^{1-2a_{0}}e^{-b_{0}\pi}\int_{-1}^{1}\frac{\tau'(q(s))\,ds}{(q(s)-p(x))^{1-2a_{0}}}+\mu_{1}ab^{1-2a_{0}}e^{b_{0}\pi}\int_{-1}^{1}\frac{\tau'(p(s))\,ds}{(q(x)-p(s))^{1-2a_{0}}}+$$

$$+\mu_{1}b^{2-2a_{0}}e^{b_{0}\pi}\int_{x}^{1}\frac{\tau'(q(s))\,ds}{(q(x)-q(s))^{1-2a_{0}}}-\mu_{1}b^{2-2a_{0}}e^{-b_{0}\pi}\int_{-1}^{x}\frac{\tau'(q(s))\,ds}{(q(s)-q(x))^{1-2a_{0}}}=$$

$$=\gamma_{0}\left[\mu_{0}D_{-1,x}^{1-2a_{0}}\tau(p(x))+\mu_{1}D_{x,1}^{1-2a_{0}}\tau(q(x))\right]+\Psi_{3}(x), \quad x \in I.$$
(25)

С учётом тождеств $p(x)-p(s)=a(x-s),\ q(x)-p(s)=1-bx-as,\ q(x)-q(s)=b(s-x)$ и равенства $a\tau'(p(x))=-b\tau'(q(x))+f'(x)$ из (7) уравнение (25) запишем в виде

$$\mu_{0}e^{b_{0}\pi} \int_{-1}^{x} \frac{b\tau'(q(s)) ds}{(x-s)^{1-2a_{0}}} - \mu_{0}e^{-b_{0}\pi} \int_{x}^{1} \frac{b\tau'(q(s)) ds}{(s-x)^{1-2a_{0}}} + \mu_{0}a^{1-2\beta}e^{-b_{0}\pi} \int_{-1}^{1} \frac{b\tau'(q(s)) ds}{(1-ax-bs)^{1-2a_{0}}} - \mu_{1}b^{1-2a_{0}}e^{b_{0}\pi} \int_{-1}^{1} \frac{b\tau'(q(s)) ds}{(1-bx-as)^{1-2a_{0}}} + \mu_{1}e^{b_{0}\pi} \int_{x}^{1} \frac{b\tau'(q(s)) ds}{(s-x)^{1-2a_{0}}} - \mu_{1}e^{-b_{0}\pi} \int_{-1}^{x} \frac{b\tau'(q(s)) ds}{(x-s)^{1-2a_{0}}} =$$

$$= \gamma_{0} \left[\mu_{0}D_{-1,x}^{1-2a_{0}}\tau(q(x)) + \mu_{1}D_{x,1}^{1-2a_{0}}\tau(q(x)) \right] + \Psi_{4}(x), \quad x \in I,$$
(26)

где

$$\Psi_4(x) = \Psi_3(x) + \mu_0 e^{b_0 \pi} \int_{-1}^{x} \frac{f'(s) ds}{(x-s)^{1-2a_0}} - \mu_0 e^{-b_0 \pi} \int_{x}^{1} \frac{f'(s) ds}{(x-s)^{1-2a_0}} - \frac{f'(s) ds}{(x-s)^{1-2a_0}$$

$$-\mu_1 b^{2-2a_0} e^{b_0 \pi} \int_{-1}^{1} \frac{f'(s) ds}{(1-bx-as)^{1-2a_0}} + \gamma_0 \mu_0 D_{-1,x}^{1-2a_0} f(x).$$

К уравнению (26) применим оператор интегрирования дробного порядка $\Gamma(1-2a_0)D_{-1,x}^{2a_0-1}$:

$$(\mu_{0}e^{b_{0}\pi} - \mu_{1}e^{-b_{0}\pi}) \left(\int_{-1}^{x} \frac{dt}{(x-t)^{2a_{0}}} \int_{-1}^{t} \frac{b\tau'(q(s)) ds}{(t-s)^{1-2a_{0}}} \right) - (\mu_{0}e^{-b_{0}\pi} - \mu_{1}e^{b_{0}\pi}) \left(\int_{-1}^{x} \frac{dt}{(x-t)^{2a_{0}}} \int_{t}^{1} \frac{b\tau'(q(s)) ds}{(s-t)^{1-2a_{0}}} \right) + \mu_{0}a^{1-2a_{0}}e^{-b_{0}\pi} \left(\int_{-1}^{x} \frac{dt}{(x-t)^{2a_{0}}} \int_{-1}^{1} \frac{b\tau'(q(s)) ds}{(1-at-bs)^{1-2a_{0}}} \right) - \mu_{1}b^{1-2a_{0}}e^{b_{0}\pi} \left(\int_{-1}^{x} \frac{dt}{(x-t)^{2a_{0}}} \int_{-1}^{1} \frac{b\tau'(q(s)) ds}{(1-bt-as)^{1-2a_{0}}} \right) =$$

$$= \gamma_{0}\Gamma(1-2a_{0}) \left[\mu_{0}D_{-1,x}^{2a_{0}-1}D_{-1,x}^{1-2a_{0}}\tau(q(x)) - \mu_{1}D_{-1,x}^{2a_{0}-1}D_{x,1}^{1-2a_{0}}\tau(q(x)) \right] + \Psi_{4}(x), \quad x \in I.$$
 (27)

В силу легко проверяемых тождеств

$$\int_{-1}^{x} \frac{dt}{(x-t)^{2a_0}} \int_{-1}^{t} \frac{b\tau'(q(s)) ds}{(t-s)^{1-2a_0}} = -\Gamma(2a_0)\Gamma(1-2a_0)\tau(q(x)),$$

$$\int_{-1}^{x} \frac{dt}{(x-t)^{2a_0}} \int_{t}^{1} \frac{b\tau'(q(s)) ds}{(s-x)^{1-2a_0}} = -\pi \operatorname{ctg}(2a_0\pi)\tau(q(x)) - \int_{-1}^{1} \left(\frac{1+x}{1+t}\right)^{1-2a_0} \frac{\tau(q(t)) dt}{t-x},$$

$$\int_{-1}^{x} \frac{dt}{(x-t)^{2a_0}} \int_{-1}^{1} \frac{b\tau'(q(s)) ds}{(1-at-bs)^{1-2a_0}} = \int_{-1}^{1} \left(\frac{1+x}{1+a-bs}\right)^{1-2a_0} \frac{b\tau(q(s)) ds}{1-ax-bs},$$

$$\int_{-1}^{x} \frac{dt}{(x-t)^{2a_0}} \int_{-1}^{1} \frac{b\tau'(q(s)) ds}{(1-bt-as)^{1-2a_0}} = \int_{-1}^{1} \left(\frac{1+x}{1+b-as}\right)^{1-2a_0} \frac{a\tau(q(s)) ds}{1-bx-as}$$

запишем уравнение (27) в виде

$$\tau_1(x) - \lambda \int_{-1}^{1} \left(\frac{1+x}{1+t}\right)^{1-2a_0} \frac{\tau_1(t) dt}{t-x} = \lambda_1 \int_{-1}^{1} \frac{\tau_1(s) ds}{1-ax-bs} + \lambda_2 \int_{-1}^{1} \frac{\tau_1(s) ds}{1-bx-as} + R_1[\tau_1] + \Psi_5(x), \quad x \in I, \quad (28)$$

где
$$\tau_1(x) = \tau(q(x)), \ \lambda_1 = -\mu_0 a^{1-2a_0} e^{-b_0\pi}/\lambda_0, \ \lambda_2 = \mu_1 b^{1-2a_0} e^{b_0\pi}/\lambda_0,$$

$$R_1[\tau_1] = \lambda_1 \int_{-1}^{1} \left[\left(\frac{1+x}{1+a-bs} \right)^{1-2a_0} - 1 \right] \frac{\tau_1(s) \, ds}{1-ax-bs} + \lambda_2 \int_{-1}^{1} \left[\left(\frac{1+x}{1+b-as} \right)^{1-2a_0} - 1 \right] \frac{\tau_1(s) \, ds}{1-bx-as}$$

— регулярный оператор, $\Psi_5(x) = \Psi_4(x)/\lambda_0$ — известная функция.

Уравнение (28) является сингулярным интегральным уравнением с нефредгольмовым оператором в правой части, так как в силу равенства a+b=1 ядра в точке (x,s)=(1,1) имеют изолированные особенности первого порядка (они выделены отдельно).

2.2. ВЫВОД И ИССЛЕДОВАНИЕ ИНТЕГРАЛЬНОГО УРАВНЕНИЯ ВИНЕРА-ХОПФА

Запишем уравнение (28), считая пока его правую часть известной функцией, в виде

$$\tau_1(x) - \lambda \int_{-1}^{1} \left(\frac{1+x}{1+t}\right)^{1-2a_0} \frac{\tau_1(t) dt}{t-x} = g(x), \quad x \in I,$$
(29)

где

$$g(x) = \lambda_1 \int_{-1}^{1} \frac{\tau_1(s) \, ds}{1 - ax - bs} + \lambda_2 \int_{-1}^{1} \frac{\tau_1(s) \, ds}{1 - bx - as} + R_1[\tau_1] + \Psi_5(x), \quad x \in I.$$
 (30)

Теорема 3. Если функция $g(x) \in L_p(I)$, p > 1, удовлетворяет условию Гёльдера при $x \in I$, то для решения $\tau_1(x)$ уравнения (29) в классе функций H(I) справедлива формула

$$\tau_1(x) = \frac{g(x)}{1 + \lambda^2 \pi^2} + \frac{\lambda}{1 + \lambda^2 \pi^2} \int_1^1 \left(\frac{1 + x}{1 + t}\right)^{1 - 2a_0 - \delta} \left(\frac{1 - x}{1 - t}\right)^{\delta} \frac{g(t) dt}{t - x},\tag{31}$$

 $e \partial e \delta = \operatorname{arctg}(\lambda \pi)/\pi$.

Схему доказательства теоремы 3 см. в [9, с. 41].

Подстановка (30) в (31) даёт

$$\tau_{1}(x) = \frac{\lambda_{1}}{1 + \lambda^{2} \pi^{2}} \int_{-1}^{1} \frac{\tau_{1}(s) ds}{1 - ax - bs} + \frac{\lambda_{2}}{1 + \lambda^{2} \pi^{2}} \int_{-1}^{1} \frac{\tau_{1}(s) ds}{1 - bx - as} + \frac{\lambda(1 + x)^{1 - 2a_{0} - \delta} (1 - x)^{\delta}}{1 + \lambda^{2} \pi^{2}} \int_{-1}^{1} \tau_{1}(s) ds \int_{-1}^{1} \frac{(1 + t)^{\delta + 2a_{0} - 1}}{(1 - t)^{\delta}} \left(\frac{\lambda_{1}}{1 - at - bs} + \frac{\lambda_{2}}{1 - bt - as} \right) \frac{dt}{t - x} + R_{2}[\tau_{1}] + \Psi_{6}(x), \quad x \in I,$$
(32)

где

$$R_2[\tau_1] = \frac{1}{1 + \lambda^2 \pi^2} R_1[\tau_1] + \frac{\lambda}{1 + \lambda^2 \pi^2} \int_{-1}^{1} \left(\frac{1 + x}{1 + t}\right)^{1 - 2a_0 - \delta} \left(\frac{1 - x}{1 - t}\right)^{\delta} \frac{R_1[\tau_1]}{t - x} dt$$

— регулярный оператор,

$$\Psi_{6}(x) = \frac{1}{1 + \lambda^{2} \pi^{2}} \Psi_{5}(x) + \frac{\lambda}{1 + \lambda^{2} \pi^{2}} \int_{-1}^{1} \left(\frac{1 + x}{1 + t}\right)^{1 - 2a_{0} - \delta} \left(\frac{1 - x}{1 - t}\right)^{\delta} \frac{\Psi_{5}(t) dt}{t - x}$$

— известная функция.

Вычислим внутренный интеграл A(x,s) в (32):

$$A(x,s) = \int_{-1}^{1} \frac{(1+t)^{\delta+2a_0-1}}{(1-t)^{\delta}} \left(\frac{\lambda_1}{1-bs-at} + \frac{\lambda_2}{1-as-bt} \right) \frac{dt}{t-x}.$$
 (33)

В (33) рациональную часть подынтегрального выражения разложим на простые дроби и запишем его в виде

$$A(x,s) = \frac{\lambda_1}{1 - bs - ax} \int_{-1}^{1} \frac{(1+t)^{\delta + 2a_0 - 1}}{(1-t)^{\delta}} \left(\frac{1}{t-x} + \frac{a}{1 - bs - at}\right) dt + \frac{\lambda_2}{1 - as - bx} \int_{-1}^{1} \frac{(1+t)^{\delta + 2a_0 - 1}}{(1-t)^{\delta}} \left(\frac{1}{t-x} + \frac{b}{1 - as - bt}\right) dt.$$
 (34)

Вычислим несобственные интегралы в (34). Имеют место формулы [12]

$$\int_{-1}^{1} \frac{(1+t)^{\alpha-1}(1-t)^{\beta-1}}{t-x} dt = \frac{\pi \operatorname{ctg}(\beta \pi)}{(1+x)^{1-\alpha}(1-x)^{1-\beta}} - \frac{2^{\beta-1}B(\alpha, \beta-1)}{(1+x)^{1-\alpha}} F\left(\alpha, 1-\beta, 2-\beta; \frac{1-x}{2}\right),
\int_{-1}^{1} \frac{(1+t)^{\alpha-1}(1-t)^{\beta-1}}{1-bs-at} dt =
= \frac{\pi}{\sin(\beta \pi)} \frac{b^{\beta-1}a^{1-\alpha-\beta}}{(1+a+bs)^{1-\alpha}} \frac{1}{(1-s)^{1-\beta}} + \frac{B(\alpha, \beta-1)}{2^{2-\alpha-\beta}a} F\left(2-\alpha-\beta, 1, 2-\beta; -\frac{b(1-s)}{2a}\right), \quad (35)$$

где $B(\alpha, \beta)$ — бета-функция Эйлера.

В силу (35) формулу (34) запишем как

$$A(x,s) = \frac{\lambda_1}{1 - bs - ax} \left[-\frac{\pi \operatorname{ctg}(\delta \pi)}{(1 + x)^{1 - 2a_0 - \delta}(1 - x)^{\delta}} + \frac{\pi}{\sin(\delta \pi)} \frac{b^{-\delta} a^{1 - 2a_0}}{(1 + a + bs)^{1 - 2a_0 - \delta}} \frac{1}{(1 - s)^{\delta}} + R(b, a; x, s) \right] + \frac{\lambda_2}{1 - as - bx} \left[-\frac{\pi \operatorname{ctg}(\delta \pi)}{(1 + x)^{1 - 2a_0 - \delta}(1 - x)^{\delta}} + \frac{\pi}{\sin(\delta \pi)} \frac{a^{-\delta} b^{1 - 2a_0}}{(1 + b + as)^{1 - 2a_0 - \delta}} \frac{1}{(1 - s)^{\delta}} + R(a, b; x, s) \right], \quad (36)$$

где

$$R(a,b;x,s) = \frac{B(\delta + 2a_0, -\delta)}{2^{1-2a_0}} \bigg[F\bigg(1 - 2a_0, 1, 1 + \delta; \frac{1-x}{2}\bigg) - F\bigg(1 - 2a_0, 1, 1 + \delta; \frac{-a(1-s)}{2b}\bigg) \bigg],$$

 $R(b,a;x,s)/(1-bs-ax),\ R(a,b;x,s)/(1-as-bx)$ — регулярные ядра. В силу (36) уравнение (32) примет вид

$$\tau_{1}(x) = \frac{\lambda_{1}(1 - \lambda\pi \cot(\delta\pi))}{1 + \lambda^{2}\pi^{2}} \int_{-1}^{1} \frac{\tau_{1}(s) ds}{1 - ax - bs} + \frac{\lambda_{2}(1 - \lambda\pi \cot(\delta\pi))}{1 + \lambda^{2}\pi^{2}} \int_{-1}^{1} \frac{\tau_{1}(s) ds}{1 - bx - as} + \frac{\lambda\lambda_{1}\pi}{\sin(\delta\pi)} \frac{a^{1-2a_{0}}}{b^{\delta}} \int_{-1}^{1} \left(\frac{1 + x}{1 + a + bs}\right)^{1-2a_{0} - \delta} \left(\frac{1 - x}{1 - s}\right)^{\delta} \frac{\tau_{1}(s) ds}{1 - ax - bs} + \frac{\lambda\lambda_{2}\pi}{\sin(\delta\pi)} \frac{b^{1-2a_{0}}}{a^{\delta}} \int_{-1}^{1} \left(\frac{1 + x}{1 + b + as}\right)^{1-2a_{0} - \delta} \left(\frac{1 - x}{1 - s}\right)^{\delta} \frac{\tau_{1}(s) ds}{1 - bx - as} + R_{2}[\tau_{1}] + \Psi_{6}(x), \quad x \in I,$$
 (37)

где

$$R_{2}[\tau_{1}] = R_{1}[\tau_{1}] + \frac{\lambda \lambda_{1}(1+x)^{1-2a_{0}-\delta}(1-x)^{\delta}}{1+\lambda^{2}\pi^{2}} \int_{-1}^{1} \frac{R(b,a;x,s)\tau_{1}(s) ds}{1-ax-bs} + \frac{\lambda \lambda_{2}(1+x)^{1-2a_{0}-\delta}(1-x)^{\delta}}{1+\lambda^{2}\pi^{2}} \int_{-1}^{1} \frac{R(a,b;x,s)\tau_{1}(s) ds}{1-bx-as}$$

— регулярный оператор.

Уравнение (37) с учётом равенства $1 - \lambda \pi \operatorname{ctg}(\delta \pi) = 0$ запишем в виде

$$\tau_{1}(x) = \frac{\lambda \lambda_{1} \pi}{\sin(\delta \pi)} \frac{a^{1-2a_{0}}}{b^{\delta}} \int_{-1}^{1} \left(\frac{1-x}{1-s}\right)^{\delta} \frac{\tau_{1}(s) ds}{1-ax-bs} + \frac{\lambda \lambda_{2} \pi}{\sin(\delta \pi)} \frac{b^{1-2a_{0}}}{a^{\delta}} \int_{-1}^{1} \left(\frac{1-x}{1-s}\right)^{\delta} \frac{\tau_{1}(s) ds}{1-bx-as} + R_{3}[\tau_{1}] + \Psi_{6}(x), \quad x \in I,$$
(38)

где

$$R_{3}[\tau_{1}] = R_{2}[\tau_{1}] + \frac{\lambda \lambda_{1}}{\sin(\delta \pi)} \frac{a^{1-2a_{0}}}{b^{\delta}} \int_{-1}^{1} \left[\left(\frac{1+x}{1+a+bs} \right)^{1-2a_{0}-\delta} - 1 \right] \left(\frac{1-x}{1-s} \right)^{\delta} \frac{\tau_{1}(s) ds}{1-ax-bs} + \frac{\lambda \lambda_{2}}{\sin(\delta \pi)} \frac{b^{1-2a_{0}}}{a^{\delta}} \int_{-1}^{1} \left[\left(\frac{1+x}{1+a+bs} \right)^{1-2a_{0}-\delta} - 1 \right] \frac{\tau_{1}(s) ds}{1-bx-as}$$

— регулярный оператор.

Уравнение (38) относительно неизвестной функции $\tau_1(x)$ не является фредгольмовым, так как ядра этого уравнения имеют изолированные особенности первого порядка в точке (x,s)=(1,1). С учётом равенств $1-bx-as=b(1-x)+a(1-s),\ 1-ax-bs=a(1-x)+b(1-s)$ в (38) сделаем замену переменных $x=1-2e^{-y},\ s=1-2e^{-t}$ и введём обозначения [8]

$$\begin{split} \rho(y) &= e^{-(1/2-\delta)y} \tau_1 (1-2e^{-y}), \\ K_0(x) &= \sqrt{2\pi} \bigg(\frac{\lambda_1^*}{ke^{-x/2} + e^{x/2}} + \frac{\lambda_2^*}{e^{-x/2} + ke^{x/2}} \bigg), \quad k = \frac{a}{b}, \\ \lambda_1^* &= \frac{\lambda \lambda_1 \pi}{\sin(\delta \pi)} \frac{a^{1-2a_0}}{b^{1+\delta}}, \quad \lambda_2^* &= \frac{\lambda \lambda_2 \pi}{\sin(\delta \pi)} \frac{b^{-2a_0}}{a^{\delta}}, \end{split}$$

тогда оно примет вид

$$\rho(y) = \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} K_0(y - t)\rho(t) dt = R_5[\rho] + \Psi_7(y), \quad y \in [0, +\infty),$$
 (39)

где $R_5[\rho] = e^{-(1/2-\delta)y} R_4[\rho]$ — регулярный оператор, $\Psi_7(y) = e^{-(1/2-\delta)y} \Psi_6(y)$ — известная функция. Уравнение (39) является интегральным уравнением Винера–Хопфа [13, с. 56]. Функция $K_0(x)$ имеет показательный порядок убывания на бесконечности, причём $K_0'(x) \in C[0, +\infty)$. Следовательно, $K_0(x) \in L_2 \cap H_\alpha$ [13, с. 12].

Теоремы Фредгольма для интегральных уравнений типа свёртки применимы лишь в случае, когда индекс этих уравнений равен нулю. Индексом уравнения (39) будет индекс выражения $1 - K^{\wedge}(x)$, взятый с обратным знаком: $\chi = -\operatorname{Ind}(1 - K^{\wedge}(x))$ [13, с. 56], где

$$K^{\wedge}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-ixt} K_0(t) dt = \int_{-\infty}^{+\infty} \left(\frac{\lambda_1^*}{e^{t/2} + ke^{-t/2}} + \frac{\lambda_2^*}{ke^{t/2} + e^{-t/2}} \right) e^{-ixt} dt.$$
 (40)

Хорошо известно [10, с. 212], что

$$\int_{-\infty}^{+\infty} \frac{e^{-ixt} dt}{ke^{t/2} + e^{-t/2}} = \frac{\pi e^{ix \ln k}}{\sqrt{k} \operatorname{ch}(\pi x)}.$$
 (41)

В силу равенства (41) из представления (40) легко получить

$$K^{\wedge}(x) = \frac{\pi(\lambda_1^* + \lambda_2^*)\cos(x\ln k)}{\sqrt{k}\operatorname{ch}(\pi x)} - i\frac{\pi(\lambda_1^* - \lambda_2^*)\sin(x\ln k)}{\sqrt{k}\operatorname{ch}(\pi x)}.$$
(42)

Из (42) в силу условия (16) получим

$$\frac{\pi(\lambda_1^* + \lambda_2^*)}{\sqrt{k}} = \frac{\lambda \pi^2}{\sqrt{k} \sin(\delta \pi)} \left(\lambda_1 \frac{a^{1 - 2a_0}}{b^{1 + \delta}} + \lambda_2 \frac{b^{-2a_0}}{a^{\delta}} \right) = \frac{-\lambda \pi^2 \sqrt{b}}{\lambda_0 \sqrt{a} \sin(\delta \pi)} \left[\mu_0 \frac{a^{2 - 4a_0}}{b^{1 + \delta} e^{b_0 \pi}} - \mu_1 \frac{b^{1 - 4a_0}}{a^{\delta} e^{-b_0 \pi}} \right] < 1. \quad (43)$$

В силу неравенства (43) из (42) следует неравенство $\operatorname{Re}(1-K^{\wedge}(x)) > 0$, причём $\operatorname{Re}K^{\wedge}(x) = O(1/\operatorname{ch}(\pi x))$ для достаточно больши́х |x|.

Заметим, что аргумент комплексной переменной z=x+iy равен $\arg z=\arctan(y/x)$, если $\operatorname{Re} z=x>0$. Таким образом [13, с. 28], с учётом $\operatorname{Re} K^{\wedge}(\pm\infty)=0$, $\operatorname{Im} K^{\wedge}(\pm\infty)=0$ имеем

$$\begin{split} \chi &= -\operatorname{Ind}(1 - K^{\wedge}(x)) = -\frac{1}{2\pi} [\operatorname{arg}(1 - K^{\wedge}(x))]\big|_{-\infty}^{+\infty} = \\ &= -\frac{1}{2\pi} \left[\operatorname{arctg} \frac{\operatorname{Im}(1 - K^{\wedge}(x))}{\operatorname{Re}(1 - K^{\wedge}(x))}\right]\big|_{-\infty}^{+\infty} = -\frac{1}{2\pi} \left[\operatorname{arctg} \frac{0}{1} - \operatorname{arctg} \frac{0}{1}\right] = 0, \end{split}$$

т.е. изменение аргумента выражения $1-K^{\wedge}(x)$ на действительной оси, выраженное в полных оборотах, равно нулю, индекс $\chi=0$. Следовательно, уравнение (39) однозначно редуцируется к интегральному уравнению Фредгольма второго рода, которое однозначное разрешимо.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Министерства инновационного развития Республики Узбекистан (проект ФЗ-202009211).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Мирсабуров, М. Задача с условием Франкля и Бицадзе-Самарского на линии вырождения и на параллельных характеристиках для уравнения Геллерстедта с сингулярным коэффициентом / М. Мирсабуров, У. Бобомуродов // Дифференц. уравнения. — 2012. — Т. 48, № 5. — С. 730-737.

- 2. Бицадзе, А.В. О некоторых простейших обобщениях линейных эллиптических краевых задач / А.В. Бицадзе, А.А. Самарский // Докл. АН СССР. 1969. Т. 185, № 4. С. 739–740.
- 3. Франкль, Ф.И. Обтекание профилей газом с местной сверхзвуковой зоной, оканчивающейся прямым скачком уплотнения / Ф.И. Франкль // Прикл. математика и механика. 1956. Т. 20, № 2. С. 196–202.
- 4. Цзянь-бин, Л. О некоторых задачах Франкля / Л. Цзянь-бин // Вестн. ЛГУ. Математика, механика, астрономия. 1961. Т. 3, № 13. С. 28–39.
- Девингталь, Ю.В. О существовании и единственности решения одной задачи Ф.И. Франкля / Ю.В. Девингталь // Изв. вузов. Математика. — 1958. — № 2. — С. 39–51.
- 6. Капустин, Н.Ю. О решении одной проблемы в теории задачи Франкля для уравнений смешанного типа / Н.Ю. Капустин, К.Б. Сабитов // Дифференц. уравнения. 1991. Т. 27, № 1. С. 60—68.
- 7. Рузиев, М.Х. Краевая задача для уравнения смешанного типа с сингулярными коэффициентами / М.Х. Рузиев // Изв. вузов. Математика. 2022. № 7. С. 18–29.
- 8. Мирсабуров, М. Краевая задача для одного класса уравнений смешанного типа с условием Бицадзе—Самарского на параллельных характеристиках / М. Мирсабуров // Дифференц. уравнения. 2001. Т. 37, № 9. С. 1281–1284.
- 9. Смирнов, М.М. Уравнения смешанного типа / М.М. Смирнов. М. : Наука, 1985. 304 с.
- 10. Салахитдинов, М.С. Нелокальные задачи для уравнений смешанного типа с сингулярными коэффициентами / М.С. Салахитдинов, М. Мирсабуров. Ташкент : Университет, 2005. $224~\rm c.$
- 11. Бицадзе, А.В. Некоторые классы уравнений в частных производных / А.В. Бицадзе. М. : Наука, 1981. 448 с.
- 12. Мирсабуров, М. Об одном обобщении задачи Трикоми / М. Мирсабуров, О. Бегалиев, Н.Х. Хуррамов // Дифференц. уравнения. 2019. Т. 55, № 8. С. 1117–1126.
- 13. Гахов, Φ .Д. Уравнения типа свертки / Φ .Д. Гахов. М. : Наука, 1978. 295 с.

ON A NON-LOCAL PROBLEM FOR THE GELLERSTEDT EQUATION WITH SINGULAR COEFFICIENTS

M. Mirsaburov¹, R. N. Turaev²

 $\begin{tabular}{ll} Termez State University, Uzbekistan \\ e-mail: 1mirsaburov@mail.ru, 2rasul.turaev@mail.ru \end{tabular}$

The question of the unambiguous solvability of a non-local boundary value problem with conditions of the Bitsadze–Samarskii and Frankl type for a mixed type equation with singular coefficients is investigated.

Keywords: mixed type equation, singular coefficient, Bitsadze–Samarsky condition, Frankl condition, singular integral equation, non-Fredholm operator, Wiener–Hopf integral equation, Fredholm equation of the second kind.

FUNDING

This work was carried out with the support from the Ministry of Innovative Development of the Republic of Uzbekistan (project no. FZ-202009211).

REFERENCES

- 1. Mirsaburov, M. and Bobomurodov, U.E., Problem with Frank and Bitsadze–Samarskii conditions on the degeneration line and on parallel characteristics for the gellerstedt equation with a singular coefficient, *Differ. Equat.*, 2012, vol. 48, no. 5, pp. 737–744.
- 2. Bitsadze, A.V. and Samarskii, A.A., O nekotorix prosteyshix obobsheniyax lineynix ellipticheskix krayevix zadach (Some elementary generalizations of linear elliptic boundary value problems), *Dokl. Akademii Nauk*, 1969, vol. 185, no. 4, pp. 739–740.

- 3. Frankl, F.I., Obtekaniye profiley gazom s mestnoy sverkhzvukovoy zonoy, okanchivayusheysa pryamim skachkom uplotneniya (Subsonic flow about a profile with a supersonic zone), *Prikl. Mat. Mekh.*, 1956, vol. 20, no. 2, pp. 196–202.
- 4. Jianbing, L., O nekotorix zadachax Franklya (On some Frankl' problems), Vestn. Leningr. Univ. Mat., 1961, vol. 3, no. 13, pp. 28–39.
- 5. Devingtal, Yu.V., O sushestvovanii i yedinstvennosti resheniya odnoy zadachi (On the existence and uniqueness of the solution to the Frankl problem), *Izv. vuzov. Math.*, 1958, no. 2, pp. 39–41.
- 6. Kapustin, N.Yu., On the solution of one problem in the theory of the Frankl problem for equations of mixed type, *Differ. Equat.*, 1991, vol. 27, no. 1, pp. 60–68.
- 7. Ruziev, M.X., Boundary value problem for a mixed-type equation with singular coefficients, *Russ. Math.*, 2022, vol. 66, no. 7, pp. 14–24.
- 8. Mirsaburov, M., A boundary value problem for a class of mixed equations with the Bitsadze–Samarskii condition on parallel characteristics, *Differ. Equat.*, 2001, vol. 37, no. 6, pp. 1349–1353.
- 9. Smirnov, M.M., Uravneniye smeshannogo tipa (Equations of Mixed Type), Moscow: Nauka, 1981.
- 10. Salakhitdinov, M.S. and Mirsaburov, M., Nelokalniye zadachi dlya uravneniy smeshannogo tipa s singulyarnimi koeffitsientami (Nonlocal Problems for Equations of Mixed Type with Singular Coefficients), Tashkent: Universitet, 2005.
- 11. Bitsadze, A.V., Nekotoriye klassi uravneniy v chastnix proizvodnix (Some Classes of Partial Differential Equations), Moscow: Nauka, 1981.
- 12. Mirsaburov, M., Begaliev, O., and Khurramov, N.K., Generalization of the Tricomi problem, *Differ. Equat.*, 2019, vol. 55, no. 8, pp. 1084–1093.
- 13. Gahov, F.D., Uravneniya tipa svertki (Equations of Convolution Type), Moscow: Nauka, 1978.