ОМНДифференциальные уравнения Differential Equations

  • ISSN (Print) 0374-0641
  • ISSN (Online) 3034-5030

КЛАССИЧЕСКОЕ РЕШЕНИЕ ПЕРВОЙ СМЕШАННОЙ ЗАДАЧИ ДЛЯ ВОЛНОВОГО УРАВНЕНИЯ В ЦИЛИНДРИЧЕСКОЙ ОБЛАСТИ В ПРОСТРАНСТВЕ НЕЧЁТНОЙ РАЗМЕРНОСТИ

Код статьи
10.31857/S0374064125050045-1
DOI
10.31857/S0374064125050045
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 61 / Номер выпуска 5
Страницы
618-627
Аннотация
Рассмотрена первая смешанная задача для волнового уравнения в цилиндрической области в пространстве с нечётным количеством измерений. С помощью метода характеристик найдены явная формула классического решения данной задачи, а также условия согласования на исходные функции, гарантирующие достаточную гладкость решения во всей области.
Ключевые слова
смешанная задача волновое уравнение условия согласования формула Кирхгофа
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
3

Библиография

  1. 1. Корзюк, В.И. Классическое решение первой смешанной задачи для уравнения Клейна–Гордона– Фока в полуполосе / В.И. Корзюк, И.И. Столярчук // Дифференц. уравнения. — 2014. — Т. 50, № 8. — С. 1108–1117.
  2. 2. Корзюк, В.И. Классическое решение первой смешанной задачи для гиперболического уравнения второго порядка в криволинейной полуполосе с переменными коэффициентами / В.И. Корзюк, И.И. Столярчук // Дифференц. уравнения. — 2017. — Т. 53, № 1. — С. 77–88.
  3. 3. Чернятин, В.А. О разрешимости смешанной задачи для неоднородного гиперболического уравнения / В.А. Чернятин // Дифференц. уравнения. — 1988. — Т. 24, № 4. — C. 717–720.
  4. 4. Барановская, С.Н. Смешанная задача для уравнения колебания струны с зависящей от времени косой производной в краевом условии / С.Н. Барановская, Н.И. Юрчук // Дифференц. уравнения. — 2009. — Т. 45, № 8. — С. 1188–1191.
  5. 5. Шлапакова, Т.С. Смешанная задача для уравнения колебания ограниченной струны с производной в краевом условии, направленной не по характеристике / Т.С. Шлапакова, Н.И. Юрчук // Вестн. БГУ. Сер. 1. Физика. Математика. Информатика. — 2013. — № 1. — С. 64–69.
  6. 6. Эванс, Л.К. Уравнения с частными производными / Л.К. Эванс. — Новосибирск : Тамара Рожковская, 2003. — 562 c.
  7. 7. Ильин, В.А. О разрешимости смешанных задач для гиперболического и параболического уравнений / В.А. Ильин // Успехи мат. наук. — 1960. — Т. 15, № 2. — С. 97–154.
  8. 8. Корзюк, В.И. Уравнения математической физики / В.И. Корзюк. — 2-е изд., испр. и доп. — М. : Ленанд, 2021. — 478 с.
  9. 9. Корзюк, В.И. Классическое решение первой смешанной задачи для волнового уравнения в цилиндрической области / В.И. Корзюк, И.И. Столярчук // Дифференц. уравнения. — 2022. — Т. 58, № 10. — С. 1353–1359.
  10. 10. Корзюк, В.И. Произвольной гладкости классическое решение первой смешанной задачи для уравнения типа Клейна–Гордона–Фока / В.И. Корзюк, И.И. Столярчук // Весцi НАН Беларусi. Сер. фiз.-мат. навук. — 2022. — Т. 58, № 1. — С. 34–47.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека